DAHLGREN DIVISION
NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5100

NSWCDD/MP-95/162

INVERSE SEMIGROUPS AND BOOLEAN
MATRICES

BY STEPHEN LIPSCOMB AND CHRIS DUPILKA
MARY WASHINGTON COLLEGE

FOR
WEAPONS SYSTEMS DEPARTMENT

MAY 1996

Approved for public release; distribution is unlimited.

DTIC QUuaLrTy INSPECTED &

19960812 103




Form Approved

REPORT DOCUMENTATION PAGE OBM No. 0704-0188

Public reporting burden for this celiection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspact of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services. Directorate for information Operations and Reports, 1215 Jetferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

i. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1996

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Inverse Semigroups and Boolean Matrices

6. AUTHOR(s)
Stephen Lipscomb Chris Dupilka

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER
Attn: G305
Commander ]
NSWCDD NSWCDD/MP-95/162
17320 Dahigren Rd
Dahlgren, VA 22448-5100
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

Following its fragmentary beginnings in the 1920s and 1930s, the algebraic theory of semigroups has grown from seminal
attempts at generalizing group theory into a vast and independent branch of algebra. One subbranch is the extensively developed
and exceptionally promising class of inverse semigroups. Intuitively speaking, these semigroups are to partial symmetry what
groups are to symmetry. Here we describe software designed to multiply elements of certain inverse semigroups, just as hand
calculators multiply numbers. Given the wide range of applications of group theory (symmetry); e.g., understanding roots of
polynomials, deriving Laplace spherical functions, understanding rigid-body motion, and classifying quantum particles, it is only
natura! to consider applications of the more general mathematical theory of partial symmetries. As a first step, the authors have
developed software to perform basic (inverse) semigroup operations (muitiplications, inverses, etc.). Since the elements of these
semigroups may also be pictured as certain matrices of “0s” and “1s”—ausually called monomial or Boolean matrices—the Boolean
matrix calculator described in Part II is designed to simultaneously display a given semigroup element in both path notation (which
exhibits the partial symmetries) and the corresponding monomial (“0-1") matrix. The calculator takes entries in either path
notation or matrix notation, and when a Boolean matrix M is the input, the program determines if M represents an element of the
semigroup. Given that the knowledge surrounding inverse semigroups is vast; e.g., Mario Petrich’s graduate mathematics text
Inverse Semigroups contains approximately 700 pages, and given that the time required to learn this area is also substantial, the
calculator described here may prove valuable to those who desire a quick exposure to the essential aspects of partial symmetries.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Boolean, inverse semigroups,

16. PRICE CODE

17. SECURITY CLASSIFICATION|18. SECURITY CLASSIFICATION| 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE SECURITY SLp 20. LIMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

i/ii Prascribed by ANSI std. Z39-18
298102




NSWCDD/MP-95/162

FOREWORD

This report documents software that multiplies and manipulates elements of symmetric
inverse semigroups. The work was funded by the Marine Corps Systems Command Am-
phibious Warfare Directorate (MARCORSYSCOM-AW) under the Marine Corps
Exploratory Development Program MQ1A PE 62131M. Mr. Robert Stiegler, Maneuver
Warfare Technology Office, Naval Surface Warfare Center, Dahlgren Division, Dahlgren,
Virginia, is the Program Management point of contact for this task.

Approved by:
/-;/’4/ B NPT
Fhape & T Lot Y

DAVID S. MALYEVAC, Deputy Head

Weapons Systems Department

i /iv




NSWCDD/MP-95/162
CONTENTS

Section Page
Part I (Mathematical Background) ... 1
1. Basic Comeepts ...ttt 2
2. Some Subsemigroups of By, ... e 3
3. Paths o e 5
4. Building Charts From Paths ........ . .. i i 6
5. Decomposing Charts with Paths ...... .. .. . . 6
6. Decomposing Partial Transformations ........ ... ... . ..o .. 8
7. Cilia and Cells of Partial Transformations .............. ... .. 11
8. Review and Connection With the Calculator Described in Part IT ............. 12
Part IT (Boolean Matrix Calculator) ......... ... ... . . i i 14
9. Contents of Boolean Matrix Calculator Instruction Manual .................. 15
10, Introduction . .....o..iiiin i e 15
1L, ISPy o e e 15
12, Commands ... e 16
13. Error Conditions .. ......iiiiiii it e e e 17

APPENDIXES
A—Source Listing for Boolean Matrix Calculator ........... ... ... . ... ... ... A-1
B—References to Research on By, oot e B-1
C—Historical Comments on Semigroups and Path Notation ................... C-1
DIS T RIBU T ION e e e e e e (1)

ILLUSTRATIONS

Figure Page
3.1 Picturing Paths ..o 5)
5.1 The Path Decomposition of a Chart ............. ... i, 8
6.1 Partial Transformations and Path Notation ................................... 9
6.2 Maximal Proper Paths, Circuits, and Common Terminal Segments ........... 10
7.1 Decomposing a Partial Transformation ............. ... ... . it 11
8.1 Partial Symmetries of Some Members of By ..........ciiiiiiiiiiiiii i 13

v/vi




NSWCDD/MP-95/162

PART I

Mathematical Background for Boolean
Matrix Calculator Described in Part II




NSWCDD/MP-95/162
1. Basic Concepts

A semigroup S is a non-empty set S together with an associative multiplication (binary
operation .S X S — §). For example, if S = {...,~3,-2,~1,0,1,2,3,...} is the set of
integers under multiplication, then S is a semigroup. A subsemigroup T of a semigroup S
is a non-empty subset T of S such that ¢;,¢; € T implies the product t;¢, is also in 7. For
example, if T = {1,2,3,...}, then since a product of positive integers is a positive integer,
T is a subsemigroup of the integers under multiplication.

As one might expect, the class of semigroups is indeed large. For our purposes, however,
we shall restrict our attention to subsemigroups of the semigroup of binary relations B,
under relation composition. More precisely, for N = {1,2,... ,n}, the semigroup B,

“.o”

consists of all subsets & C N x N with the multiplication “o” given by
aof={(45)|(i,k) € aand (k,j)€pBforsomeke N} (a,f€ B,).

Each relation « in B, may be realized as an n X n matrix of zeros and ones (a monomial
matriz). For example, if o = {(1,2),(3,4)} € By, then a corresponds to the matrix

(oo 2 e B e I e
v R e R e 2 @)

0
0
1
0

O OO =

In other words, each binary relation a € B,, corresponds to a monomial matrix A = [ai;],

which is given by
{ 1 i (4,)) € o,
i =

0 otherwise.

This correspondence is bijective, i.e., @ — [a;;] and [aij] = a are inverse mappings.
For a multiplication “-” of monomial matrices that corresponds to relation composition
“o”, we have the usual matrix multiplication with the restriction that 1 + 1 = 1.” For

example, in B; we have

1 01 1
0 0 1}-10
0 00 1

S O =
O D
Il
O = o
OO
OO

With this matrix multiplication, the set M, x, of n X n monomial matrices becomes a
semigroup, which is isomorphic to the semigroup B,.! Because of this isomorphism, the
elements of B, may be called either binary relations or monomial matrices.

! A semigroup S is isomorphic to a semigroup S’ when there is a bijection ¢ : S — S’ such that (ab)¢ = agbo
for every a,b € S.




NSWCDD/MP-95/162

An element ¢ of B, is an idempotent if ee = €. For example, since

010 010 010
0o10)-{o10)={010},
00 0 000 000

we see that this monomial matrix is an idempotent in B3. An element a of a semigroup S
is a regular element if the equation ara = a has a solution; and S is a regular semigroup if
each of its elements is regular. (This idea of “regular” is due to von Neumann 1936.) For
instance, if

then
0 1 0 0 00 01 0 01 0
0 0 1}-1{1 06O 0 0 11=10 0 1],
0 0 1 0 1 0 0 0 1 0 01

showing that a is a regular element of Bs. An element b € S is an inverse of a € S, if both
aba = a and bab = b. Moreover, a semigroup S is an inverse semigroup if every element
has a unique inverse.

2. Some Subsemigroups of B,

The semigroup S, of all permutations of N = {1,2,... ,n} is the set of all one-one onto
functions a : N — N under composition. This semigroup may be viewed as a subsemigroup
of B,. For example, S, contains two permutations — think of the monomial matrices that
have ezactly one “1” in each row and each column —

{00 1)(0 o))

One of these matrices, written as a function, yields the permutation {(1,1),(2,2)} while
the other yields {(1,2),(2,1)}. In general, each such matrix (exactly one “1” in each row
and each column) in B,, defines a permutation in S,. This correspondence shows that we
may view S, a subsemigroup of B,. The semigroup S, is called the symmetric group on
n symbols.

We also have the symmetric inverse semigroups C,, n = 1,2,3,.... Their members
are charts and the multiplication is function composition. Charts are also called partial
one-one transformations. A chart a € C,, if and only if « : da — ra is a one-one function
whose domain da and range ra are subsets of N = {1,2,...,n}. Since permutations of
N are charts in Cp, the symmetric group S, is a subgroup of C,. Each semigroup C,

3




NSWCDD/MP-95/162

may also be viewed as a subsemigroup of B,,. For n = 2, there are seven charts — think
of the monomial matrices that have at most one “1” in each row and each column. The
symmetric inverse semigroup C; therefore contains not only the two permutations in Sa,
but also the five charts

(06)(0 0)-(6 9)-(2 6) =2 (3 )

The semigroup C,, is a subsemigroup of the still larger semigroup PT,, which consists
of all partial transformations of {1,2,... ,n}. More precisely, « € PT, if and only if
@ :da — ra is a function whose domain da and range ra are subsets of N = {1,2,...}.
To picture the elements of PT, inside of By, we may think of the monomial matrices that
have at most one “1” in each row. For example, PT, contains nine members — the seven
matrices in Cy and the two matrices

(o) = (5 3),

Turning to the numbers of members of some of these subsemigroups of B,,, we have that
the number |B,| of elements in B, is 2"2, the number in PT;, is (n + 1)®, the number in
Cnis > i, (Z)zk!, and the number in S, is n!. In particular, for n = 2,... 8, we have
the following;:

|Bn| |PThn| |Cal |5

n=2 16 9 7 2
=3 512 64 34 6
=4 65,536 625 209 24
=5 33,554,432 7,776 1546 120
=6 68,719,476,736 117,649 13,327 720
062,949,953,421, 312 2,097,152 130,922 5,040

n=38 18,446,744,073,709,551,616 43,046,721 1,441,729 40,320.

For our last subsemigroup of B, let us consider transposes of the members of PT, —
we obtain another subsemigroup “PT7” of B,, which is antiisomorphic to PT,, i.e., using
aT to indicate the transpose of a € PT,,

(ao B)T =pT0aT (a,p € PT,).

So like PT5, the antimorph PT] of PT, also has nine members — the seven members of
C, and the two matrices

(0) =) = (1)~ 1)

4




NSWCDD/MP-95/162

In general, we may think of PTT as consisting of those monomial matrices that have a
most one “1” in each column.

3. Paths

Having S, as a subgroup of Cy, we might suspect that the disjoint cycle decomposition
of permutations somehow extends to charts, i.e., given any chart a € C,, we desire .to

“decompose” a = aj ---aj into certain “atomic charts” aa,... 0. In this section, we
develop such a decomposition of charts. (For the time being, we do not use the matrix
notation.)

In conjunction with the usual parentheses “(” and “)”, path notation allows for the use
of a right square bracket “]”. The bracket “]” serves to specify those points that are not in
the domain of a chart, e.g., (1)(2] - - - (n] denotes the empty (or zero) chart 0 € Cp. Other
examples are pictured in Figure 3.1.

2 3
3
@ :
1 1 1 4 1
(1) (1] (1234) (123)

Figure 3.1. Picturing paths.

More precisely, for distinct elements i1,...,i; of N, let a € Cy, have domain da =
{1,... ,ix} and suppose i = iz, 190 = 13, ..., lp—1Q = if, and iya = ¢q. Then ais a
path. Turning on the value of g, we have two kinds of paths: If g =1 and N —da =
{j1,--- yJn—k}, then

o = (i1,12, .-+ 2k )(J1) (2] -+ - (Fn—i]
is a circust (a k-circuit or a circuit of length k). If ¢ # ¢y, then N — da = {g,ms,mo,...,
mn_k_l} and
a= (11,12, .. , ik, g)(ma)(ma] - (mp—k-1)
is a proper path (a proper (k + 1)-path or a proper path of length k + 1).2

In addition to these paths (circuits of length > 1 and proper paths of length > 2), we

define, for each j € N, the proper 1-path

(J1=(@)(2]---(n] =0 € Cn.

2Depending on context, we use “(i1,... ,ik,q]” to denote either the chart (i1,... %, gJ(m1) -+ (mnp_k—-1)
or a proper path.




NSWCDD/MP-95/162

We therefore have {-paths, i.e., circuits and proper paths of length £ > 1. For example,
(1]--- (¢ = 1]J(#)(¢ + 1]--- (n] denotes the 1l-circuit with domain {i}, while (12](3]:--(n]
denotes the proper 2-path that maps 1 to 2. Every path has an obvious geometrical
representation (Figure 3.1).

4. Building Charts From Paths

To build charts from paths, let a, 8 € C, and suppose that (da Ura) and (d8 Urf) are
disjoint. Then a and § are disjoint and the join v of a and B (denoted v = aff = Ba) is
the chart with domain da Udg and values determined by

{ za, z€da
Ty =
zB, zedp.

So the join v = af exists if, and only if, @ and S are disjoint. For instance, the proper
2-path a = (12](3](4] and the 2-circuit # = (1](2](34) are disjoint charts in C,; and their
join is v = aff = (12](34). Note that we did not write v = (12](3](4](1}(2](34), which
would be confusing. It turns out that the explicit appearance of 1-paths “(j]” is often
unnecessary. This is similar to the case of 1-cycles in cycle notation. To make matters
worse, at times we shall also suppress 1-circuits “(j).”

Learning to multiply charts in path notation is like learning to multiply permutations
in cycle notation, it takes a little practice. For starters, use the charts o = (123)(45]
and 8 = (41)(53)(2] in Cs to calculate a o 8 = (1](25](34). Then practice taking powers
of the proper 5-path v = (12345] — calculate that v* = (135](24], v* = (14](25)(3],

74 = (15)(2)(3)(4], and 7 = (1](2](3](4(5] = 0.

5. Decomposing Charts with Paths

Pick any chart o € C,, and suppose that z € da. We shall form some proper paths and
circuits that depend on the a-iterates of z: Let us look at the first iterate. We define

N = (z,za] fza#z, or 7,=(z) fra=z.
Continuing with higher order iterates, for each k > 2, we also define

n: = (z,za,2a%,... ,zaf] when {z,za,za?,... ,za*} has size k + 1, and

2 2

v = (z,za,za?,... ;za*"1) when {z,za,za?,... ,za®} has size k and za* = z.

Each n; is a proper path in a; and each circuit 7, is a circuit in o. But unlike circuits, each
proper path n = (¢1,%2,... ,%] has a left-endpoint i1 and a right-endpoint 7. Moreover, a

6




NSWCDD/MP-95/162

proper path 7, in « is mazimal when its left endpoint 2 € da — ra and its right endpoint
za* € ra — da.

To describe how the various paths in o must interact, we shall say that the path n meets
the path v whenever they are not disjoint, i.e., when

(dnUrn)N(dyUry) #0.

To illustrate, note that the circuit (123) meets the proper 2-path (43] at 3, while the proper
paths (1234] and (5678} are disjoint.

5.1 Lemma

If a € C,, then the following are true:

(1) For mazimal paths n and n' in a, either n =n' or n does not meet 7'

(2) For circuits v and ' in a, either v ="' or v does not meet v'.

(3) No mazimal path n in o meets any circuit v in a.

(4) For each y € ra — da, there exist z € da —ra and k > 1 such that za* =y, i.e.,
mazimal n; = (¢,za,... ,zaf = y| ezists whenever y € ra — da.

We are now in a position to state the fundamental representation theorem.

5.2 Theorem (Unique Representation of Charts)
Every chart a € C,, — {0} is a (disjoint) join
771 ..-nu7l cc-"yv
of some (possibly none) length > 2 proper paths m1,... 1, and some (possibly none) cir-

cutts Yi,... ,vo. Moreover, this factorization is unique ezcept for the order in which the
paths are written.

From Theorem 5.2, each nonzero a € C,, is a disjoint join

o = (all "'alkl]"'(aul "’auku](bll "'blml)"'(bvl "'bvmv)

of proper paths of length > 2 and circuits. If {j1,...,j¢} = N — (da Ura), then none of
the 7;’s appear in the representation specified in Theorem 5.2. We may, however, augment
the Theorem 5.2 join with the proper 1-paths (j;] (j; ¢ da Ura) and obtain yet another
unique representation. Indeed, augmenting the representation above, we obtain

o = (]1] .. '(jl](all .. 'alkl] ce (aul . "auku](bll .. 'blml) . (bvl .. .bvmv),

7




NSWCDD/MP-95/162

A ONC

Figure 5.1. The path decomposition of a chart.

which we shall call either the path decomposition or join representation of a. For instance,
the decomposition of a = {(1,2),(2,3),(4,5),(5,4)(7,7)} € Cr, which may be written in

standard form
1 2 3 45 6 7
““(2 3 — 5 4 - 7)607’
is simply (123](6](45)(7) and may be graphically represented as in Figure 5.1.

We also note that while the zero chart 0 of C, is excluded from Theorem 5.2, it does
have path decomposition (1] :- - (n]. The zero (1] (n] is an example of a nilpotent, which
is a chart whose path decomposition contains no circuits. In fact, given a € C, with join
representation above, its nilpotent part is

n= (1] Gellan - aik ] (@ur - @ui, J(bua] - (brma ] -+ (Bon] -+ (b, ;

and its permutation part is

- (jl]"'(jf](an]"'(alkl]‘"(Gul]"'(auku](bll "'blml)"'(bvl ...bvmu)_

In other words, each chart a = 7y is the join of its nilpotent and permutation parts.
In particular, the chart o = (123](6](45)(7) pictured in Figure 5.1 has nilpotent part
n = (123](6] = (123](6](4](5](7] and permutation part v = (45)(7) = (45)(7)(1](2](3](6].

6. Decomposing Partial Transformations

Recall that the semigroup PT, of partial transformations on N = {1,2,... ,n} is the
set of all functions a : da — ra (with domain da C N and range ra C N) under function
composition. Relative to S, and Chr, the useful semigroup hierarchy is

S, cC, Cc PT, C B,,

where B, is the semigroup of all binary relations « € N x N under composition. In
extending path notation from Cy to PT,, we shall introduce the right angle “}” notation,
a notation that identifies those points where certain proper paths meet a circuit. Examples
are provided in Figure 6.1, where members of PT,, are pictured geometrically.

8




NSWCDD/MP-95/162

5o 6 2 3 3
3 4 5 T
7 2 4
2 1 h 4 1
(31)(41)(51)(12) (562)(762)(1234) (123](43]

Figure 6.1. Partial transformations and path notation.

Since S, C C, C PT, C B, it is natural to extend the idea of “join in C},” to join in
B,: For a, 8 € By, define the join af as the union o U 3. In particular,

ﬂe{C’n if @, € Cp, and (daUra)N(dfurs) =10
“ PT, ifa,8 € PT,, and z € danNdf = za = zf.

With this join operation, we could start with proper paths and circuits in C, and then
build partial transformations. We begin in reverse, however, starting with o € PT, and
then defining certain paths induced by a. First, for each z ¢ da U ra, we shall call the
expression “(z]” a mazimal proper path in . And then for z € da and k > 1, we let

. = (z,za,... ,za*] when {z,za,za?,... za*} has size k + 1, and
77 b bl ] b b 3 b )

v: = (z,za,. .. ,za®) when {z,zq,... ,za* 71} has size k with za* =z and za® =z,

calling 1, a proper path in a, and 7y, (whenever it exists) a circuit in . Such a proper path
ns is also mazimal if its left endpoint z € da — ra and its right endpoint za* € ra — da.
So maximal proper paths in @ come in two varieties — those of the 1, kind and those
expressions “(z]” where z ¢ da Ura.

For paths 1 and v in «, we say that n meets v whenever they are not disjoint (as charts).
In particular, if (dp U rp) N (dy Ury) = {y}, then n meets v at y; and if both n and v
are proper paths with a common proper terminal segment o, we say that n meets v in o,
where, for £ > 2 and n = (71 - - - &), we say that n has

inttial sets: {i1}, {i1,7%2},. .-, {i1,%2, ... 2k };
terminal sets: {i1,92,... y2k}y--o » {Tk—1,0k}, {2k };
initial segments: (i1],(31,12],... ,(¢1 -+ 1x); and
terminal segments: (i1 -ix],- -« ,(Tk=1, k), (Tk)-

To illustrate these concepts, consider the partial transformation

123456 17
a‘(211337—)€PT7

9




NSWCDD,/MP-95/162

4 5
3
/7
2 6
(431)(531)(12)(67)

Figure 6.2. Maximal proper paths, circuits, and common terminal segments.

as pictured in Figure 6.2. Note that each of n = (431], n' = (531], and " = (67] is a proper
path in «, but that only n'' is maximal. Moreover, observe that v = (12) is a circuit in

a, that both n and n' meet v at 1, and that n meets n’ in the common terminal segment
o = (31].

6.1 Lemma

Let a € PT,,. Ifn and n' are mazimal proper paths in a and if v and 4" are circuits in a,
then the following statements are true:

(1) Ifn meetsn', then eithern = n' or 77 meets ' in a common proper terminal segment.
(2) Either v =" or v does not meet ~'.
(3) For each y € ra — da there exist © € da —ra and k > 1 such that za* = Y, 1.6, @

mazimal 1, = (z,za, ... ,zaf = y] ezists whenever Yy € ra —da.

6.2 Theorem (Unique Representation of Partial Transformations)

Every transformation o € PT, — {0} is a join 5y -1y - **Yy of some (possibly nomne)
length > 2 proper paths ny,...,n, and some (possibly none) circuits vy, ... ,%, such that
for indices i,j (distinct in (1) and (2)):

(1) n:i meets n;, if at all, in ¢ common proper terminal segment;
(2) 7i does not meet v;; and
3) m: meets v;, of at all, at the right endpoint of n;.

J g P n

Moreover, this factorization is unique except for the order in which the paths are written.

10




NSWCDD/MP-95/162

3 10
9
? O
.
1 5 6 7 8 11

12

Figure 7.1. Decomposing a partial transformation.

7. Cilia and Cells of Partial Transformations
From Theorem 6.2, each nonzero a € PT, is a join

o = (all "'alkl]"'(aul "'auku](bll "'blml)”'(bvl ...bvmv)

of proper paths (of length > 2) and circuits that satisfy (1)~(3) in 6.2. To this join, then,
we may join the proper 1-paths (ji], ji ¢ da Ura, yielding

o = (jl]"'(je](all .. 'alkl] e (aul .. 'auku](bll .. 'blml) .o .(bv1 .. .bvmv)'

We shall refer to this unique representation as either the path decomposition or join repre-
sentation of . In particular, & = 0 € PT,, has join representation (1] ---(n], even though
the zero transformation 0 of PT, is excluded from 6.2.

In the join representation of a partial transformation, proper paths are of two kinds,
namely, those that meet circuits and those that do not meet circuits. We call each of the
former kind a cilium (plural = cilia). For example,

o = (1,2, ,i,xo](dfo,itl,... ,.’L‘m_l) S PTn

is a join of a cilium (1,2,--- ,¢,20) and a circuit, which we clearly mark by replacing the
right bracket “|” with the right angle “)”, yielding

a=(1,2,...,1,%0) (€0, T1,--- ,Tm—1)-

We say that (zg,21,... ,Tm-1) is associated with (1,2,... ,1, z¢), and, in reverse, that (1,2,

.., 1,To) is associated with (zo,z1,... ,Tm—1). We may, in fact, have any finite number
of cilia 7y, ... ,nx associated with one circuit . In such a case, the join 7y - - - nry is called
a cell. A typical cell is pictured in Figure 7.1, where we see the partial transformation

12 3 45 6 7 8 9 10 11 12
3 6 7 8 7

2 3 - 10 7 8 11 —)GPT”’

whose path decomposition is (1,2,3](4,3](5,6,7,8)(9,7,8)(8,10)(11)(12]. This particular

partial transformation has two cells, one with two cilia and the other with none.

11




NSWCDD/MP-95/162
8. Review and Connection With the Calculator Described in Part II

The semigroup of binary relations B, and its subsemigroups S, C C, C PT, C B,
were defined and studied in the previous sections. In §1, we observed that each binary
relation a € B, is equivalent to a monomial (or Boolean) matriz. In §2, we considered
the subsemigroups S, (symmetric group of permutations), Cp, (symmetric semigroup of
charts), and PT, (semigroup of partial transformations). In §3, restricting our attention
to Cy, we defined the “atomic charts” — proper paths and circuits. In §4 and §5, we
provided rules for joining these atomic charts and stated that any arbitrary chart in C,,
may be expressed as a “unique disjoint join” of atomic charts (Theorem 5.2). In other
words, when a Boolean matrix is a chart, it has an equivalent path notation representation.
In §6 and §7, these “path notation” results were extended from C,, to PT,.

To further illustrate and unify the facts already presented, we shall apply Green’s rela-
tions (discovered by J. A. Green in 1951) to the manageable case of By. Green’s relations
are equivalence relations that allow for picturing arbitrary semigroups and certain of their
ideals in terms of egg-bozes. (To understand the software discussed in Part I1, we need not
define Green’s relations.?) '

The egg-box structure of B, appears in the left-side of Figure 8.1 as a “chain of four
vertically-linked boxes,” where the 16 members of B, are represented as Boolean matrices.
In the middle of Figure 8.1, the nine members of PT, are represented in path notation, as
are the seven elements of C; in the right-side egg-box, where the symmetric group S, also
appears and whose elements are expressed in cycle notation.

The reason that some of the “cells” in the egg-boxes in the middle and right egg-box
pictures are empty is that there is (as yet) no general theory for expressing (as unique
Joins of proper paths and circuits) the members of B, that are not in PT;.

For every n, the “top box” in the egg-box structure of any B, is always the symmetric
group Sy, sometimes referred to as the group of units. Figure 8.1 illustrates, in a limited
sense, the progress of understanding the members of B,, in terms partial symmetries — the
decomposition theorem (Theorem 6.2 above) exposes the partial symmetries of members
of PT,. In the theory of semigroups, the ability to see partial symmetries (path notation)
has already proven useful, allowing for solutions of several previously unsolved problems.
It is therefore natural to consider applications of these theoretical results.

For example, an n x n-pixel array of lights (a monochrome image) may be viewed as
a monomial n X n matrix (a pixel is “on” wherever there is a “1”). The “binary rela-
tion calculator” described in Part II may then be used to illustrate that multiplication
of arbitrary “images” by elements in C,, allow for rotations, translations, dilations, and
contractions of these images. In addition, if we have two images a, 8 € C,, then whenever
a is a “subimage” of B3, it is necessarily true that the product @ o #~! must be a join of
1-paths — a fact that is easily visually checked by looking at the path notation form of

3For a development of Green’s relations, the interested reader is referred to John Howie’s text, An Intro-
duction to Semigroup Theory, Academic Press, 1976; and for applications of Green’s relations to By, see
Janusz Konieczny’s 1992 Penn State Dissertation, Semigroups of Binary Relations.

12




NSWCDD/MP-95/162

EGG-BOX STRUCTURE OF B;

B, PT2 02
(1)(1) (1)(1) (1)(2) Q2 (1)(2) (12) | =—— 52
01 10
11 11
11 11
01 10
ol 30 ¢ 91 (2) © (21] (2) | (1]
8(1) (1)3 (1)(1) (12} § (1) (12] | (1)
01 10 11 (12)) @)
33 (1] (1)

Figure 8.1. Partial Symmetries of some members of Bs.

the product a o 371, which is calculated by the calculator.

We feel that further investigation of applications of the semigroup theory is justified. In
particular, more effort will be needed to extend our binary matrix calculator to the PT,
case — the calculator described in Part II is currently limited to the C, case.

13




NSWCDD/MP-95/162

PART II

Boolean Matrix Calculator
Instruction Manual

14




NSWCDD/MP-95/162

9. Contents of Boolean Matrix Calculator Instruction Manual

10. Introduction

11. Display

12. Commands
12.1 How to scroll through the list
12.2 How to enter a chart
12.3 How to enter a Boolean matrix
12.4 How to invert a binary relation
12.5 How to multiply two binary relations
12.6 How to copy a binary relation
12.7 How to delete a binary relation
12.8 The grid command
12.9 The exit command

13. Error Conditions

10. Introduction

The Boolean Matrix Calculator (BMC) is a program which facilitates the manipulation
of Boolean matrices (binary relations) just as an ordinary pocket calculator facilitates the
manipulation of numbers.

11. Display

The display is divided up into three main parts. In the top left part of the display is a
menu of the available commands. The commands are initiated by hitting the single key
which is to the immediate left of the command. The function of each command is detailed
in §12 of this manual. In the bottom part of the display is a window to the list of binary
relations which have been entered into the computer. When you enter a binary relation
into the computer, it is inserted into a list. The window shows up to four binary relations
on the list at a time. The binary relations are written in path notation if that is possible,
or, if that is not presently possible, the word Unrepresentable is written instead. Currently,
to be written in path notation, this program requires that the binary relation be a chart,
that is, a partial one to one function. In the top right part of the display a binary relation
is rendered as a monochrome digital image. This is done in a two step process. First, the
binary relation is represented as a Boolean matrix. This Boolean matrix representation is
then taken and every zero is converted into an off pixel and every one is converted into an
on pixel, thus giving us a monochrome digital image. The binary relation that is rendered
in an image is the one in the window with the arrow (—) pointing to it.

15




NSWCDD/MP-95/162

12. Commands

12.1 How to scroll through the list. When you enter a binary relation into the
computer, it is inserted into a list. You can scroll through this list using the plus key (+)
and the minus key (—). Hitting the plus key scrolls the list up one relation. Similarly,
hitting the minus key scrolls the list down one relation. For example, assume the computer
is currently displaying relations 17 through 20 in the window and relation 20 is in image
form. If you hit the minus key, then the window scrolls down one relation and relations 16
through 19 are displayed in the window and relation 19 is in image form. Thus, by using
these two commands, you can display in image form any particular binary relation in the
list.

12.2 How to enter a chart. Before you can manipulate some binary relations, first you
need to enter them into the computer. One way you can do this is by typing in the path
notation of the binary relation you wish to enter. However, not every binary relation is
currently representable in path notation. This program is currently limited to accepting
the path notation of a binary relation only if it is a chart, that is, a partial one to one
function. Path notation is an extension of cycle notation for permutations. Where cycle
notation uses left and right parentheses, path notation uses left and right parentheses and
also right square brackets. Right brackets are placed after the vertices (vertices are the
elements of the set which the chart is on) which are not in the domain of the chart. For
example, assume you want to enter a binary relation which maps 1 to 2 and 3 to 4 and
which maps no other vertices. This is written in path notation as (12](34). The right
brackets after the 2 and the 4 signifying that the chart does not map these vertices. Note
that if a vertex does not explicitly appear in the path notation of a chart, it is assumed
to not map to any vertex. For example, if you enter (234] the program assumes (1](234].
This is in contrast to cycle notation where, if a vertex does not appear, it is assumed to
map to itself.

12.3 How to enter a Boolean matrix. Another way to enter a binary relation into the
computer is to type in the Boolean matrix representation of the binary relation. To do
this hit the left square bracket key, the enter a matrix command. You then type in each
row of the matrix starting with row 1 and ending with row 7. The computer interprets
blanks and zeros as zeros and everything else as ones.

12.4 How to invert a binary relation. One common operation to perform on a binary
relation is to form its inverse relation. To invert a binary relation with this program, you
first scroll the list so that the relation you want to invert is the one in the window with
the arrow pointing to it. Then hit I, the invert command. The relation is then taken and
inverted. The original relation is deleted from the list and the new relation is inserted in
its place.

16




NSWCDD/MP-95/162

12.5 How to multiply two binary relations. Another common operation to perform
with binary relations is to multiply them. In this context multiplication means relation
composition. To multiply two binary relations with this program, first scroll the list so
that the two relations you want to multiply are in the window and the arrow is pointing
to the second relation. Then hit M, the multiply command. The two relations are then
taken and multiplied (composed). Then the two original relations are deleted from the list
and their product is inserted in their place.

12.6 How to copy a binary relation. Sometimes you will want to enter the same
binary relation several times. This would occur, for example, if you wanted to find the
integer powers of a binary relation. Instead of entering the relation in by hand repeatedly,
you can hit C, the copy command. When you use the copy command, a copy is made
of the relation in the window with the arrow pointing to it. This copy is then inserted
into the list immediately after the original. For example, if you enter the binary relation
(123)(ab), then hit C eight times, you get eight copies of the relation. If you then hit M,
the multiply command, you get the relation squared, then cubed, etcetera. Continuing,
you see that the seventh power is the same as the first power. Thus there are six different
relations and the order of this particular binary relation is six.

12.7 How to delete a binary relation. Sometimes you will want to delete one of
the binary relations on the list. Perhaps you entered the path incorrectly. To delete a
particular binary relation, scroll the list so that the binary relation you want to delete 1s
the one in the window with the arrow pointing to it. Then hit D, the delete command,
and it will be deleted from the list. Any binary relations below it on the list will be moved

up.

12.8 The grid command. Sometimes when a binary relation is displayed as an image
it is hard to tell from the display what vertices are mapped. For example, if you enter the
relation (fgh), from the image it is hard to tell if f maps to f or to g or to h. Now if T hit
G, the grid command, a grid is superimposed over the image making it easier to find each
pixel’s coordinates. And if you hit G again, the grid is removed.

12.9 The exit command. To exit the program and return to DOS, hit E, the exit
command, and the program will terminate execution.

13. Error Conditions (Listed alphabetically)

0 is greater than OPOINT. This error should never occur. If it does, it means that
there is a problem in the computer hardware or software.

At the bottom of the list. This error occurs if you hit the plus key when the list is
scrolled up to the last relation on the list and can scroll no further.

17




NSWCDD/MP-95/162

At the top of the list. This error occurs if you hit the minus key when the list is scrolled
down to the top of the list and can scroll no further.

At the top of the list. There is no chart here to delete. This error occurs if you
try to delete a relation at the top of the list, where there is no relation.

At the top of the list. There is no relation to copy here. This error occurs if you
try to copy a relation at the top of the list, where there is no relation.

At the top of the list. There is no relation to invert here. This error occurs if you
try to invert a relation at the top of the list, where there is no relation.

BPOINT is greater than MPOINT. This error should never occur. If it does, it means
that there is a problem in the computer hardware or software.

Error. Expected a “(” instead of a “ ”. This error occurs when the path nctation
you enter contains an error. Specifically, the computer expected a (.

Error. Expected a vertex instead of a “”. This error occurs when the path notation
you enter contains an error. Specifically, the computer expected a vertex, that is a 1, 2, 3,
. g h,ori.

Error. Expected a vertex, “)”, or “]” instead of “”. This error occurs when the
path notation you enter contains an error. Specifically, the computer expected a vertex,
thatisa1,2,3,..,g h,i,ora), ora].

Error. Image has already been related to by a preimage. This error occurs when
the path notation you enter contains an error. Specifically, the image you entered has
already been related to by a preimage.

Error. Image vertex is less than 1. This error occurs when the path notation you
enter contains an error. Specifically, the image you entered is less than 1.

Error. Image vertex is too large. This error occurs when the path notation you enter
contains an error. Specifically, the image you entered is too large.

Error. Preimage has already been related to an image. This error occurs when
the path notation you enter contains an error. Specifically, the preimage you entered has
already been related to an image.

Error. Preimage vertex is less than 1. This error occurs when the path notation you
enter contains an error. Specifically, the preimage you entered is less than 1.

Error. Preimage vertex is too large. This error occurs when the path notation you
enter contains an error. Specifically, the preimage you entered is too large.

Error. You cannot end with a “(*. This error occurs when the path notation you
enter contains an error. Specifically, the path you entered ended with a (.

Error. You cannot end with a vertex. This error occurs when the path notation you

18




NSWCDD/MP-95/162

enter contains an error. Specifically, the path you entered ended with a vertex, that is a
1,2,3,...,8 h,ori.

Error. You need two charts to multiply. This error occurs when you try to multiply
two relations, but there are not two relation to multiply displayed in the window.

Length of PATH is less than 3xNVERT. This error should never occur. If it does, it
means that there is a problem in the computer hardware or software.

NVERT is greater than 35. This error should never occur. If it does, it means that
there is a problem in the computer hardware or software.

NVERT is greater than MVERT. This error should never occur. If it does, it means
that there is a problem in the computer hardware or software.

OPOINT is greater than BPOINT. This error should never occur. If it does, it means
that there is a problem in the computer hardware or software.

OPOINT is greater than MPOINT. This error should never occur. If it does, it means
that there is a problem in the computer hardware or software.

OPOINT is less than 0. This error should never occur. If it does, it means that there
is a problem in the computer hardware or software.

The list is full. This error occurs when you try to enter a relation into the list when
there already exists 99 relations (the maximum) in the list.

Your selection is not on the menu. This error occurs when you hit a key on the
keyboard that does not correspond to a command listed on the menu.

19




NSWCDD/MP-95/162

APPENDIX A

Source Listing for
Boolean Matrix Calculator

A-1/A-2




NSWCDD/MP-95/162

**********************************************************************
**********************************************************************
**********************************************************************
SUBROUTINE HALT (TEXT)
**********************************************************************
% THIS SUBROUTINE STOPS PROGRAM EXECUTION WHEN A FATAL ERROR IS *

* DETECTED. *
kkhkkkhkhhhhkkkhhkhkrhhdkhhhhkhrkkkhhkhkkkhhhhhkkhhhkhhhdhhhhrhkhhkhhkhhhhk

kkdkkkkkkkkkkhhhhhhhhkhhhkhhhkhhhhhhkkhkhkhkkhkhhkkkhkhkkkhkrkhhdhhhdhhhdhhhkk

* DICTIONARY *
* %*
* TEXT THE TEXT WHICH DESCRIBES TO THE USER THE FATAL ERROR *
* WHICH OCCURED. *

kkkkkkhkhkkhkhkkkhkrkhrhhokhkhrdhhhhkhhrkhhhhhkhhhkhhhhkhkhhhbkkhhhdhrhhhhhkk
dkkkkkhk Rk kkkhhhkhhkkhrkkkkkrhhkkkhrhhkkhhhhkhhkhhhkkrhknkhkhkkhkkhhkhhikhk

*# BEGIN VARIABLE SPECIFICATION. *
khkkkdkhhrr Rk hkhhhhhkhdhhhkkhhkhkrkhrhhhkhkhhhhkkhkhkhhhhhrkhhhhkkhhkhkhdhdhkk

CHARACTER®* (*) TEXT
khkkkkkh kR Rk kkkkkkkhkkkkhkhhhhhkkkrkkhkkhhhhhhhhhkhhhhhdhhhhhhhhkkkhkkhdk

* END VARIABLE SPECIFICATION. *
dhkkkkhkhkkkkkhkhkhrhhrhthhhhkdhkhhhhrdhhhhhhhrhhrhhkhkhhkhhkkkkhxhkhhhhhdhkhhk
WRITE (6, 100) TEXT
100 FORMAT (1X, ‘Fatal error. /, A)
STOP

END
kkkkkkkkkkhkhkkhkkkhkhhhkhkhhhkhhhhrhhkhhkdhkhhhhhhkhhhkdhhhhhrdrhdrohrkhir

Akkkkhkkkhkkkdkhhhkkkhkhkkkkhkhhkkhkkhrhhkhhokhkhhkdhkhkhhhhhdhkhhkkhkhrhhrhkdxdhkhk
Akkkkkkhdhkhkkkhkkhkdkhkdhkhhkhhkdkhhhhhkdhhhhhkhhhhhhhkhkhdhhrorkhhhhkhrhhirhkk
kkkkkhkhkkkhhkhkhkdkhkhhhhhkhkhrkhhhhhhdkhohkhhhhhhhkhkhkhkhhhdhhhhkhhhhhkkdxkhdkhkk
kkkkkhkkkdkhhhhhhhkrkhhhhhkhhhdhkhhhxhrkdhhhhrrhhhkhhhkhkhkkhhkhhkhhdhdkdhkhkd
kkkkkkkhhkhkhhkkhhhkhhkhkhkhrkkdhhkdhhhkdhokhhdhhkdhhkhhkkhkhhkhkhhkhhrhkhhkdkdhkhsk

SUBROUTINE PCONV (MATRIX, NVERT, PATH)
hhkkkkhhkkhhkkkhk Rk hhkhkhkkkhrhkhhhhhhhhxkhhhkhhhhdhhkdhkkhdhkkkdkkkhrhkkhx

* THIS SUBROUTINE CONVERTS A BOOLEAN MATRIX INTO PATH NOTATION. *
Khkkkhkhkdkdhkhkhhkhkkhkhhhhhkkdhkhhhhhhhhhhhhkkhhhkhhhhkrhhhhhkhkkhdhhhkhkkhk
Kkkkkkhkhkhhhkhhkhhkhhkhhkhhhkkkhhkhhkhkkhhhhkhhhhhhkhhkhhhhkhhdhkkhhkkhhk

DICTIONARY

CCONV THE ARRAY WHICH CONVERTS A POSITIVE INTEGER INTO A
CHARACTER.

CHART THE VARIABLE WHICH INDICATES IF THE GIVEN BOOLEAN
MATRIX IS A CHART.

CHARTA THE CHART STORED AS AN ARRAY OF INTEGERS.

COLUMN A COLUMN OF A BOOLEAN MATRIX.

FIRST THE FIRST VERTEX IN A CYCLE.

MATRIX THE BOOLEAN MATRIX WHICH IS CONVERTED INTO PATH

NOTATION.

MVERT THE MAXIMUM NUMBER OF VERTICIES THAT THIS SUBROUTINE CAN
HANDLE.

NTRUES THE NUMBER OF TRUES IN A ROW OR COLUMN OF A BOOLEAN
MATRIX.

NVERT THE NUMBER OF VERTICIES IN THE BOOLEAN MATRIX.

PATH THE CHART CONVERTED INTO PATH NOTATION.

POS THE POSITION POINTER INDICATING THE CHARACTER IN THE
PATH WHICH IS CURRENTLY BEING DETERMINED.

ROW A ROW OF A BOOLEAN MATRIX.

START THE LOGICAL VARIABLE WHICH INDICATES IF THE VERTEX IS
THE START OF A PROPER PATH.

VERTEX AN ELEMENT IN THE SET WHICH THE BINARY RELATION IS ON.

WRITTN THE ARRAY WHICH INDICATES IF A GIVEN VERTEX HAS BEEN

A-3

% % ok % N o o ¥ ok N H 2 N X ¥ ¥ F X F X ¥ F ¥ W
% W H o A N H X ¥ X F N ok F X F * F ¥ F X ¥




NSWCDD/MP-95/162

* WRITTEN IN THE PATH. *
RREAIRIIII IRk h ke ke h kI h ke k ke ke k ok kh ok hhk ke kk ke kkk kR ok kk ke ke k&t o ok &k &

**********************************************************************

* BEGIN PARAMETER SPECIFICATION AND INITIALIZATION. *
**********************************************************************
INTEGER MVERT
PARAMETER (MVERT = 35)
**********************************************************************
* END PARAMETER SPECIFICATION AND INITIALIZATION. *

**********************************************************************
***********************************************k**********************

* BEGIN VARIABLE SPECIFICATION. *
**********************************************************************

CHARACTER*1 CCONV (MVERT)

LOGICAL*1 CHART

INTEGER CHARTA (MVERT)

INTEGER COLUMN

INTEGER FIRST

INTEGER NVERT

LOGICAL*1 MATRIX (NVERT, NVERT)

INTEGER NTRUES

CHARACTER* ( *) PATH

INTEGER POS

INTEGER ROW

LOGICAL*1 START

INTEGER VERTEX

LOGICAL*1 WRITTN (MVERT)
**********************************************************************
* END VARIABLE SPECIFICATION. *

**********************************************************************
**********************************************************************

* BEGIN VARIABLE INITIALIZATION. *
**********************************************************************
CCONV (1) = 71’
CCONV (2) = ’2¢
CCONV (3) = ’3¢
CCONV (4) = 74
CCONV (5) = /57
CCONV (6) = ‘67
CCONV (7) = 777
CCONV (8) = 78’
CCONV (9) = 797
CCONV (10) = ’a’
CCONV (11) = ’b’
CCONV (12) = ‘¢
CCONV (13) = 74’
CCONV (14) = ‘e’
CCONV (15) = ’f*
CCONV (16) = ‘g’
CCONV (17) = ’h’
CCONV (18) = ’i“
CCONV (19) = 5
CCONV (20) = 'k
CCONV (21) = ‘1~
CCONV (22) = ’m’
CCONV (23) = ’n’
CCONV (24) = ‘o
CCONV (25) = ’p’
CCONV (26) = ‘g’
CCONV (27) = ‘r’

A-4




NSWCDD/MP-95/162

CCONV (28) = ‘s’

CCONV (29) = ‘t’

CCONV (30) = ‘u’

CCONV (31) = v’

CCONV (32) = 'w’

CCONV (33) = ’x’

CCONV (34) = 'y’

CCONV (35) = 'z’

PATH = ' *

POS = 1

DO 100 VERTEX = 1, MVERT
WRITTN (VERTEX) = .FALSE.

100 CONTINUE
Ik kkkhh Rk kkhkkhkhkkkkhkhhkkkhhkhhkkhhhhhhhkhhhhkkhkhkhkhhhhkhdkhhhhxdk

* END VARIABLE INITIALIZATION. *
**********************************************************************
IF (NVERT .GT. MVERT) CALL HALT (’NVERT is greater than MVERT.’)
IF (LEN (PATH) .LT. (3 * NVERT)) CALL HALT
+ (‘Length of PATH is less than 3 * NVERT.’)
kkhkkhkhkhkhkkdhkhkhkhhhhkdkhkkkkhdkhkhkkhkhhhkhhkhkdhhhhkhhkhhkhhhkhkhhkhhhrhkhhkthxx

* BEGIN DETERMINING IF THE MATRIX IS A CHART. *
kkkkkhkkhhhhkdkhhkhhkhdkhkhkdrhhkhhhkhhhhhhkhkhhkhhhhhhdrdhkhhhkkhhdihrhkhkdkhhkdrks
CHART = .TRUE.
DO 300 ROW = 1, NVERT
CHARTA (ROW) = 0
NTRUES = 0
DO 200 COLUMN = 1, NVERT
IF (MATRIX (ROW, COLUMN)) THEN
NTRUES = NTRUES + 1
CHARTA (ROW) = COLUMN

END IF
200 CONTINUE
IF (NTRUES .GT. 1) CHART = .FALSE.
300 CONTINUE
DO 500 COLUMN = 1, NVERT
NTRUES = 0

DO 400 ROW = 1, NVERT
IF (MATRIX (ROW, COLUMN)) THEN
NTRUES = NTRUES + 1

END IF
400 CONTINUE
IF (NTRUES .GT. 1) CHART = .FALSE.
500 CONTINUE
hhkkkhkhhkhhhkhhkhhhkkhkhhkhhhhhhkhhhhhhkhhhkkhhhhhhkhhhkhhhhhkkhdhhhhhhdrkhdk
* END DETERMINING IF THE MATRIX IS A CHART. *

khkkkhkkhkhkkxTrhrkhkhhhkkhhkkhhkhhhkdhhkhhhhkhkhrhhkkdhhkrkhhkhhhhdhkhhkhhhrhhkkhdhdk
IF (.NOT. CHART) THEN
PATH = ’‘Unrepresentable.’
GO TO 99999

END IF
hhkkkkhhhkkkhkrhkrhkhhkhhrhhhhhhhhhkhhhkhhhdhhhhhhhhkhhhhhhhhdrkddhkhrkcdhs
* BEGIN GENERATING THE NILPOTENT PART OF THE CHART. *

khkkkkkkhhkhhkhkhkrhhhkhhkhhhhhkhhbhkhbhkhhhhkdhhkhhkdhkrhkdhkdhkhkdkhhkkhhkkdkhhdhkhkdhkkkhkitxik
DO 800 COLUMN = 1, NVERT

START = .TRUE.

DO 600 ROW = 1, NVERT
IF (MATRIX (ROW, COLUMN)) START = .FALSE.

600 CONTINUE

IF (START) THEN

VERTEX = COLUMN

A-5




NSWCDD/MP-95/162

PATH (POS:POS) = ‘('
POS = POS + 1
700 CONTINUE

PATH (POS:POS) = CCONV (VERTEX)
POS = POS + 1
WRITTN (VERTEX) = .TRUE.
VERTEX = CHARTA (VERTEX)

IF (VERTEX .NE. 0) GO TO 700

PATH (POS:POS) = '}’

POS = POS + 1

kkkkkhkkhkhhkdhkhkhhhkkhkhdhhkhkhhkhhhkhkdhkhkhhkdhhdkhkhkdhkhhkhhkhhkhhhkhkkhhkbhkdbhkdhhkhhhkikihi

% BEGIN ERASING A LENGTH 1 PROPER PATH. *
khkkhkhkkhkhkkhddhhkhkhhkhkdhhhbdkhkhhkhkhhhhkhhhdkhdhhbhhhkhkrhohhdhhkhddihkdhhihkhhhkhhhkkkt
IF (PATH (POS - 3:POS - 3) .EQ. ‘()
+ THEN
PATH (POS - 3:POS - 1) = ¢ !/
POS = POS - 3
END IF
khkkkkkkdhkkhkdhkhkdbdhhkdhkhbhhhhdhkdhkrhdhbhdhdhkdhdhk it hhdhdhhkdhhkdhhdkhkhhkhkhhkkhrrthbhkkk

* END ERASING A LENGTH 1 PROPER PATH. *
kkkhkkhhhkkhhhkkrhhkkhhbrhhhhkdhhhhbhbhkhhhhhkkdhhhrhkhkhhhhdhhdhkdhodhbdhhkhkhhkidrohbhhbkkk
END IF
800 CONTINUE
khkkhkhhhkkhhkhhhhkhkhhhhikhhhhkhhhhhhhhrhhhhkhhhbrhdhhhkhkhhhkhthkhkddhthhkhkhkhhohkhkid
* END GENERATING THE NILPOTENT PART OF THE CHART. *
khdAhhkkhkhkhdhhkdhhhkhhkhdhhhddhhhbhhhkbhhrhhkhkrhhdrdhdhdhkkhhhhkhhkikhkhhhkhdkhhhhkkkkkk
hkhkkhhkkhhhkhkhhkhkhhhkhhhhkkhhkhhdhdhdhhhhbhhhhhhbdhhkhhhkhhdokdddhhkthhhkhkkithohkhkhkkksk
* BEGIN GENERATING THE PERMUTATION PART OF THE CHART. *
hhkkhkhkkkdhkhkhkhkkhkhhkhhhkhhkhhhkhhkhkhhhkhbhrhkhkhhhhkhbhhhkhhkhhhrhhhdhkhkhkhhhhkkhohdhkhdd
DO 1000 ROW = 1, NVERT
IF (.NOT. WRITTN (ROW)) THEN
FIRST = ROW
VERTEX = ROW
PATH (POS:POS) = ’(’
POS = POS + 1
900 CONTINUE
PATH (POS:POS) = CCONV (VERTEX)
POS = POS + 1
WRITTN (VERTEX) = .TRUE.
VERTEX = CHARTA (VERTEX)
IF (VERTEX .NE. FIRST) GO TO 900
PATH (POS:POS) = )
POS = POS + 1

END IF
1000 CONTINUE
X R AR R RS R R P R R R R Y P P Y E X R X3
* END GENERATING THE PERMUTATION PART OF THE CHART. *

R R A R R P P R Y P R R R L ]
IF (PATH .EQ. ’ ’) PATH = / (1]’

99999 CONTINUE
RETURN

END
kkhkhhhkkhkrhhhkhhhkhkhhhdhhhhhhhhhhhrkhkhhhhhhrrdohhrhdrrhhhhrrhRh ko hkhhhk

hhkhhhkkkkhkhkkhkkhhhkkhhhhhhhhhhhhhhhhhhrkhhhhdkhrhhhhrhrrhhkhhhkrxkkkhhhk
khkkhhhhhhdhhdhdhkhhdhhhhhhkhhhrhhhkhrkhkhhkhkhhkhhhhhkhkkkhhhhhhkhkrhdhhxhrxxkkhhhhk
khkkhkkdkhkkhhhkhkkhkhkkhhhhh bk kkdrkkdhrhhhhhhhhhkhhrhkhhkrhkkhhkkhkhkkkrhhhhhk
Fhkkhhdkhhkhkdhkhkhhrthhhhhdrkhhhhkhhhhdhhkhhhhrrhhhhhhhhrhkhkhkkhkhkhrkrkhhhk
Ahkkhhhkkhkkdhhkhkhhhhkhhhhhdrhhdhhhhhhhhhhhhhhdrahhhhrhhhkhhhhrhdhhkhhhohhkk

SUBROUTINE RELATE (IMAGE, MATRIX, MESAGE, NVERT, PREIM)
hhkkkhkhhkkhhhhkhhhkhhkhhkhhhhhhhhhhhhkhhhhhhkhhhhhhhhhhhdhhhhhhhkhhhkkkkhkd

A-6




NSWCDD/MP-95/162

# THIS SUBROUTINE RELATES THE PREIMAGE TO THE IMAGE IN THE GIVEN *

* CHART. *
hkkdkkhkkkkdhhhhkhhhkrkkkkhhhhrhhhhhkhhhhkkhhkxhhdhhhhhhhhhhhdhhhdhhhhhkk

**********************************************************************

* DICTIONARY *
* *
# COLUMN A COLUMN OF A BOOLEAN MATRIX. *
* IMAGE THE VERTEX TO WHICH THE CHART MOVES THE PREIMAGE. *
*# MATRIX THE BOOLEAN MATRIX IN WHICH THE PREIMAGE AND THE IMAGE *
* ARE RELATED. *
* MESAGE A MESSAGE FOR THE TSER. *
* NVERT THE NUMBER OF VERT.(CIES IN THE BOOLEAN MATRIX. *
* PREIM THE VERTEX WHICH THE CHART MOVES TO THE IMAGE. *

* ROW A ROW OF A BOOLEAN MATRIX. *
kkkkkdkkhkhkkkhhkkkkhkkkhhhkhkhhokhbhohkhhhrrkhhkhhhkkhhhhrhhhkkdkkhhkhh ki d

*****************************ﬁ****************************************

* BEGIN VARIABLE SPECIFICATION. *
**********************************************************************

INTEGER COLUMN

INTEGER IMAGE

INTEGER NVERT

LOGICAL*1 MATRIX (NVERT, NVERT)

CHARACTER* ( *) MESAGE

INTEGER PREIM

INTEGER ROW
**********************************************************************
* END VARIABLE SPECIFICATION. *

kkkkkhhkkhkhkhkhhkhhhkhhrkhohkrkhkikhkkhhhokkdhhrhkhhhkkkhhhhdhhkhhrokhrhkhkrkhddkk

IF (MESAGE .NE. ' ‘) GO TO 99999
kkkkkkk kR kkhkkhkhhhkkhkhkkhhkkhhkkkhkkhhhkkhhkhkhhkhkrhhhhrkhhkkhhkhhkhhkhk*

* BEGIN DETERMINING IF PREIM AND IMAGE ARE VALID VERTICIES. *
**********************************************************************
IF (PREIM .LT. 1) THEN
MESAGE = ’‘Error. Preimage vertex is less than 1.’
GO TO 99999
END IF
IF (PREIM .GT. NVERT) THEN
MESAGE = ’Error. Preimage vertex is too large.’
GO TO 99999
END IF
IF (IMAGE .LT. 1) THEN
MESAGE = 'Error. Image vertex is less than 1.’
GO TO 99999
END IF
IF (IMAGE .GT. NVERT) THEN
MESAGE = ’Error. Image vertex is too large.’
GO TO 99999

END IF
kkkhkhhhhhhhhhhhkhhhhhkhhhhkrhkkkhhhhkhkhhkhkhkkhdkhkhhhhhhhhhhkkkdhrrkhhis
* END DETERMINING IF PREIM AND IMAGE ARE VALID VERTICIES. *

kdkkkkkkhhkkhhkhhkhhkkrhhkhhhkkkkkrhkkkrhhxhhkhhhkkhhhhhkhkrhhhhkhhkrhhhkk
kkhkhkkkkkhkkkhhhhhhkhkhdhhhrhhkkhrk bk hkkkkhkhkhkhhkhhdhddhhhhdhhhkrhdhhokrd
* BEGIN VERIFYING THAT THE PREIMAGE HAS NOT BEEN PREVIOUSLY *
* RELATED TO AN IMAGE. *
hkkkkkkkhkhhkhhkkhhhhhhhdkhhkhkkkhkhkhhdkhhhkhhhhhkkhkhhhkhhhkhhhhhhhkrhhhhhkkk
DO 100 COLUMN = 1, NVERT

IF (MATRIX (PREIM, COLUMN)) THEN
MESAGE = ’Error. Preimage has already been ’ //

+ ‘related to an image.’

GO TO 99999

A-7




NSWCDD/MP-95,/162

ENDIF
100 CONTINUE
kkkkkkhhkhhhkhkhhhh ko kh ko ko khhhh kA k ko kkh kA ke rkkkk ke h ks k o
* END VERIFYING THAT THE PREIMAGE HAS NOT BEEN PREVIOUSLY *
* RELATED TO AN IMAGE. *

thkhkkhkhkhhhhhhhdhhddhhhhhhhhdhhhdhhdhdhdhhhhhhhhhhrhhhkhkhhhhhhhhdkokhhhkki
whkkkhhkhhkhhhhhhhhdhhhhhhhrhhhrhkrk xRk kkkkhkhkhhhhhhhhhhhhrhhkrhkkkkkdktk
s BEGIN VERIFYING THAT THE IMAGE HAS NOT BEEN PREVIOUSLY *
* RELATED TO BY A PREIMAGE. *
&*********************************************************************
DO 200 ROW = 1, NVERT
IF (MATRIX (ROW, IMAGE)) THEN
MESAGE = ’Error. Image has already ’ //

+ ‘been related to by a preimage.’
GO TO 99999
END IF
200 CONTINUE
**********************************************************************
* END VERIFYING THAT THE IMAGE HAS NOT BEEN PREVIOUSLY RELATED *
* TO BY A PREIMAGE. *

**********************************************************************

MATRIX (PREIM, IMAGE) = .TRUE.
99999 CONTINUE
RETURN

END
**********************************************************************

**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
SUBROUTINE BMCONV (MATRIX, MESAGE, NVERT, PATH)
**********************************************************************
* THIS SUBROUTINE CONVERTS A CHART IN PATH NOTATION INTO A CHART *

* STORED AS A BOOLEAN MATRIX. *
Fhhkhhhhhhhhhhhhhhhhhhhkkhhhhhhkhkdkk ko k ki ko k& ook ok ok & ok ok ok & ok o K % o e o o ok ok ok ok ok ok ok ok %

**********************************************************************

* DICTIONARY *
* *
* COLUMN A COLUMN OF A BOOLEAN MATRIX. *
*  DONE THE LOGICAL VARIABLE WHICH INDICATES IF THE ANALYSIS OF  #
* THE PATH IS COMPLETE. *
* FIRST THE FIRST VERTEX IN A CYCLE OR PROPER PATH OF THE CHART. *
* ICONV  THE ARRAY WHICH CONVERTS A CHARACTER INTO A POSITIVE *
* INTEGER. *
* IMAGE THE VERTEX TO WHICH THE CHART MOVES THE PREIMAGE. *
* MATRIX THE BOOLEAN MATRIX INTO WHICH THE PATH IS CONVERTED. *
* MESAGE A MESSAGE FOR THE USER. *
* NVERT  THE NUMBER OF VERTICIES IN THE BOOLEAN MATRIX. *
*  PATH THE CHART IN PATH NOTATION WHICH IS CONVERTED INTO A *
* BOOLEAN MATRIX. *
*  POS THE POSITION POINTER INDICATING THE CHARACTER IN THE *
* PATH WHICH IS CURRENTLY BEING ANALYZED. *
* PREIM THE VERTEX WHICH THE CHART MOVES TO THE IMAGE. *
*  ROW A ROW OF A BOOLEAN MATRIX. *
* SUB THE SUBSCRIPT FOR THE ICONV ARRAY. *
* *

TEMP A TEMPORARY STORAGE LOCATION FOR A CHARACTER.
Y R L L L ekl L Dl

R L L T g A A AR
* BEGIN VARIABLE SPECIFICATION. *

A-8




NSWCDD/MP-95/162

**********************************************************************

INTEGER COLUMN

LOGICAL*1 DONE

INTEGER FIRST

INTEGER ICONV (0:255)

INTEGER IMAGE

INTEGER NVERT

LOGICAL*1 MATRIX (NVERT, NVERT)

CHARACTER* ( *) MESAGE

CHARACTER* ( *) PATH

INTEGER POS

INTEGER PREIM

INTEGER ROW

INTEGER SUB

CHARACTER*1 TEMP
**********************************************************************
* END VARIABLE SPECIFICATION. *

**********************************************************************
**********************************************************************

* BEGIN VARIABLE INITIALIZATION. *
R K IR IR KRR AR ISR I A A R Rk kR kI kR kAR Rk khk ke ke kkhd ke ke ek ok ke ok
DONE = .FALSE.

DO 100 SUB = 0, 255
ICONV (SUB) = 0
100 CONTINUE

TEMP = 71/

ICONV (ICHAR (TEMP)) = 1

TEMP = 72/

ICONV (ICHAR (TEMP)) = 2

TEMP = 73/

ICONV (ICHAR (TEMP)) = 3

TEMP = 747/

ICONV (ICHAR (TEMP)) = 4

TEMP = ’57

ICONV (ICHAR (TEMP)) = 5

TEMP = ’6/

ICONV (ICHAR (TEMP)) = 6

TEMP = 77

ICONV (ICHAR (TEMP)) = 7

TEMP = /87

ICONV (ICHAR (TEMP)) = 8

TEMP = 9/

ICONV (ICHAR (TEMP)) = 9

TEMP = 735/

ICONV (ICHAR (TEMP)) = 10
TEMP = ‘b’

ICONV (ICHAR (TEMP)) = 11
TEMP = ‘¢’

ICONV (ICHAR (TEMP)) = 12
TEMP = ‘4’

ICONV (ICHAR (TEMP)) = 13
TEMP = ‘e’

ICONV (ICHAR (TEMP)) = 14
TEMP = 7f¢

ICONV (ICHAR (TEMP)) = 15
TEMP = ‘g’

ICONV (ICHAR (TEMP)) = 16
TEMP = ‘’h’

ICONV (ICHAR (TEMP)) = 17
TEMP = 73i/




NSWCDD/MP-95/162

ICONV (ICHAR (TEMP)) = 18
TEMP = ’'j’
ICONV (ICHAR (TEMP)) = 19
TEMP = 'k’
ICONV (ICHAR (TEMP)) = 20
TEMP = ‘17
ICONV (ICHAR (TEMP)) = 21
TEMP = 'm’
ICONV (ICHAR (TEMP)) = 22
TEMP = 'n’
ICONV (ICHaAR (TEMP)) = 23
TEMP = ‘o'
ICONV (ICHAR (TEMP)) = 24
TEMP = 'p’
ICONV (ICHAR (TEMP)) = 25
TEMP = ‘g’
ICONV (ICHAR (TEMP)) = 26
TEMP = 'r’
ICONV (ICHAR (TEMP)) = 27
TEMP = ‘s’
ICONV (ICHAR (TEMP)) = 28
TEMP = "t’

ICONV (ICHAR (TEMP)) = 29
TEMP = ‘u’
TCONV (ICHAR (TEMP)) = 30

TEMP = ‘v’
ICONV (ICHAR (TEMP)) = 31
TEMP = ‘w’
ICONV (ICHAR (TEMP)) = 32
TEMP = ’x’
ICONV (ICHAR (TEMP)) = 33
TEMP = 'y’
ICONV (ICHAR (TEMP)) = 34
TEMP = ‘z'

ICONV (ICHAR (TEMP)) = 35
DO 300 ROW = 1, NVERT
DO 200 COLUMN = 1, NVERT

MATRIX (ROW, COLUMN) = .FALSE.
200 CONTINUE
300 CONTINUE
POS = 1
**********************************************************************
* END VARIABLE INITIALIZATION. *

Fkkkkkk kR kkhkkkkhkhkhkkk kR Rk k kI kR kR hkhkkkhkhkkkkhhhhkkhhhhhhhhddhhhdhdk
IF (NVERT .GT. 35) CALL HALT (’NVERT is greater than 35.7)
IF (MESAGE .NE. / 7) GO TO 99999%
400 CONTINUE
**********************************************************************
IF (PATH (POS:POS) .NE. ‘(') THEN
MESAGE = ’‘Error. Expected a "(" instead of a "’ //
+ PATH (POS:POS) // '".’
GO TO 99999
END IF
IF (POS .EQ. LEN (PATH)) THEN
MESAGE = ’'Error. You cannot end with a "(".’
GO TO 99999
END IF
POS = POS + 1
Akkkhkkkhhhhhhhdhhhhkhkhhkkkkkkhkkhhhhhkhhhhkhhhhhdhkkhkdhhdhhhhdhhhiik
FIRST = ICONV (ICHAR (PATH (POS:P0S)))

A-10




NSWCDD/MP-95/162

IF (FIRST .EQ. 0) THEN
MESAGE = ’'Error. Expected a vertex ' //

+ ’instead of a "’ // PATH (POS:POS) // '"./
GO TO 999689
END IF
IF (POS .EQ. LEN (PATH)) THEN
MESAGE = ‘Error. You cannot end with a vertex.’
GO TO 99999
END IF

POS = POS + 1
dkhkrkhk Xk hkhhkhkrk kAR kXA kA Xk dhkhdhhkhkhkkhhhhkhkhhhhhhkhhhkxhdhhhhhhhhkhkixkkkxkkhdhk
PREIM = FIRST
IMAGE = ICONV (ICHAR (PATH (POS:POS)))
500 IF (IMAGE .NE. 0) THEN
CALL RELATE (IMAGE, MATRIX, MESAGE, NVERT, PREIM)
IF (MESAGE .NE. ’ /) GO TO 99999
IF (POS .EQ. LEN (PATH)) THEN
MESAGE = ’'Error. You cannot end with ’/ //
+ ‘a vertex.’
GO TO 99999
END IF
POS = POS + 1
PREIM = IMAGE
IMAGE = ICONV (ICHAR (PATH (POS:POS)))
GO TO 500
END IF
hkhkkh kA AAATAAA A AT A AR kA hhhhkkhhhdhkhhho bk hhkhkhhhhhkhhhhkrhkhbhhhhhhrhkkhkk
IF (PATH (POS:POS) .EQ. ‘)’) THEN
CALL REILATE (FIRST, MATRIX, MESAGE, NVERT, PREIM)
IF (MESAGE .NE. ’ ') GO TO 99999
POS = POS + 1
ELSE IF (PATH (POS:POS) .EQ. ‘}’) THEN
POS = POS + 1

ELSE

MESAGE = 'Error. Expected a vertex, ")", 7 //
+ ’or "]" instead of "’ // PATH (POS:POS) // '".’

GO TO 99999

END IF

IF (POS .GT. LEN (PATH)) THEN
DONE = .TRUE.

ELSE
IF (PATH (POS:) .EQ. ’ ‘) DONE = .TRUE.

END IF

Fhkkkhkkhkkkkhhkkhkhkkkhk kA kAR Rk Ak kh Ak kkhhhhkhhhhkhhhhhhhhkhkhdrkkhrkhhhk
IF (.NOT. DONE) GO TO 400

99999 CONTINUE
RETURN

END
kkkkkhkhkkhkhkhkhbhkhkhkkhkhhdhhdhhhkkhhkhhhhhdhkhdhhkhhhhhhbhhhhhhhkhhhdhhhhhhiddkhdx

Ahkkhkdxhkhhkhkdhkhkkhhkhkdkddhhhhhhhhhhkhkhbhkhohkdhkdhhhkkhhhhhkrhhhdhhkhbhkrkhhkkhhohkhkhtkkd
khkkhkkkhkdhkhkhkhkkhkhkhkhhkhkhkdkhkhhkhhhkhhkhkhrhkhhhdhbhhhrhhkkhkhdhkdhdhhhhhhkhkkhkihhdhhhhhhkhkidk
khkkkhkkhkhhkkhhkhkhhkhkhkhkkhhhhkkhkhhkkdkdhkhkhhhhhhdhhkhhhkhhhhdbkhkhhhkhthkhtdhhhkhxkksk
khkkhkxhhkhkkhkhkhhhhkhrhdhhhhhorhhhhohkhrdhkhhhhbhhkhbhkhrhhrhdhkhkhhkhhhkhhkhkhhkhhhkkhhk
khkhkkkkkkkhkkhkhkkkhkhkhkkkhkhkhhhkhkkkhkkhhkkkkhkkkkkkkhkkhkkhkkrkhkhkirhhhkhkkkhkhkhkhkkkhkkkik
SUBROUTINE DELETE (BPOINT, LIST, MESAGE, MPOINT, NVERT, OPOINT)
khkkkkhkkkkhkhkhkkhhkhkhkkhkkhkhkrhkdhkhkhkhhhhhhkhhhkdhhhbkhhhhkhhhhkhhhkhhhkkhkhhhkthhkhhkhkkks
* THIS SUBROUTINE DELETES A BOOLEAN MATRIX FROM THE LIST OF *

* BOOLEAN MATRICIES. *
hhhhhhhhhhkhhhhh kA kAR kA h kA kkkkhkhkhhkhhhhhhhhhkhhhdhhhhhhkhhhhhkhhhkhkk

hkhkkkhkhkhkhkhkhhkkhkhkkhkhkhkhhkkhhkhkhkhkhkhkhhhhhhkhkkkhkhhkhkkhdhhhhkhkkkhhhhhhdhkhkhkhkkkkhkk

A-11




NSWCDD/MP-95/162

* DICTIONARY %
* *
*# BPOINT THE POINTER TO THE BOTTOM OF THE LIST. *
* COLUMN A COLUMN OF A BOOLEAN MATRIX. *
* LIST THE LIST OF BOOLEAN MATRICES. *
* MESAGE A MESSAGE FOR THE USER. *
* MPOINT THE MAXIMUM VALUE OF BPOINT AND OPOINT. *
* NVERT THE NUMBER OF VERTICIES IN EACH BOOLEAN MATRIX IN THE *
* LIST. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *
* ROW A ROW OF A BOOLEAN MATRIX. *
* SUB THE SUBSCRIPT FOR THE LIST ARRAY. *

khkkhkkkhkhkhkhbhhhkkhkhXdkhhdhdhkddhhhhhhhrhddhhhkhkhhhkhhhdddhhhrhhkhhkhkkkkhkhhkhkkx
kkkkkhhhhhkhhhkhhkkhhhhhkhhhkhkkhihkhhkhhkhhhhhhdhdbdhhkhhhhkrhkhhhhkhhhhhhkdhhkhhk

* BEGIN VARIABLE SPECIFICATION. *
**********************************************************************

INTEGER BPOINT

INTEGER COLUMN

INTEGER MPOINT

INTEGER NVERT

LOGICAL*L LIST (MPOINT, NVERT, NVERT)

CHARACTER* ( *) MESAGE

INTEGER OPOINT

INTEGER ROW

INTEGER SUB :
**********************************************************************
* END VARIABLE SPECIFICATION. *

R T T L R R R L L L LTI,
IF (MESAGE .NE. ’ ') GO TO 99999
R L o L R R R g o g S O A A A AR AR
* BEGIN CHECKING POINTER RELATIONSHIPS. *
khkikkhkhkhhkhhhhkkhhhhhhhhhhhkhkhrhhkhhhhkdhkhhkhhkhkrhkkhhkhkrbhhhhhrrhhkhhhrhhdx
IF (0 .GT. OPOINT) CALL HALT (’0 is greater than OPOINT.’)
IF (OPOINT .GT. BPOINT) CALL HALT

+ ('OPOINT is greater than BPOINT.’)
IF (BPOINT .GT. MPOINT) CALL HALT
+ (’BPOINT is greater than MPOINT.’)
**********************************************************************
* END CHECKING POINTER RELATIONSHIPS. : *

**********************************************************************
IF (OPOINT .GT. 0) THEN
DO 300 SUB = OPOINT, BPOINT - 1
DO 200 ROW = 1, NVERT
DO 100 COLUMN = 1, NVERT
LIST (SUB, ROW, COLUMN) =

+ LIST (SUB + 1, ROW, COLUMN)
100 CONTINUE
200 CONTINUE
300 CONTINUE
OPOINT = OPOINT - 1
BPOINT = BPOINT - 1
ELSE
MESAGE = ‘At the top of the list. There is no chart ’ //
+ ‘here to delete.’
END IF
99999 CONTINUE
RETURN
END

R Y R R R R R I I I I ™
kkkkhhhkhkkhhkkhhkkhhhk ki k kR Ik AR ARk kkhhkhhkhhkhkkhdkhhkhkhkkdkdkkdkd kg d ok &k

A-12




NSWCDD/MP-95/162

**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************

INTERFACE TO INTEGER#*2 FUNCTION GETCHASM ()

END
**********************************************************************

**********************************************************************
**********************************************************************
**********************************************************************
**********************************************************************
kkhkhkhkkkkhkhkhhhhhhhdhhhhkkhkkkkkhkhkhhkhhhhkhkkhhhhhrhhhhkhohhhhhhkhhhhhhhdk

SUBROUTINE INSERT (BPOINT, LIST, MATRIX, MESAGE, MPOINT, NVERT,

+ OPOINT)

Ak kkkkkkk kI ARk kR khkrh kT hhkkhkkhhkxkhkkkhhhhkkhhhkhkdhkhhkkhdhkhkhhhkkhhrkhrkk
%+ THIS SUBROUTINE INSERTS A BOOLEAN MATRIX INTO THE LIST OF *
* BOOLEAN MATRICIES. *

hhkklkhkhkkhkkkhkhkhkhkkhhkhhkkhhkdhhkhkkkhkhhhkkhhkdrhhhhhhkhhkkhdhkhhhhhhdkhkhkhhhkhdkk
Ak khkhkkhkkkhkhkhhkhkhhkhkkhrhrhdhhkhkkhdhhhhhhhhhhkhhkhhkhhhhdhkhdhhhhrkkdhrohhhdhx

* DICTIONARY *
* *
% BPOINT THE POINTER TO THE BOTTOM OF THE LIST. *
* COLUMN A COLUMN OF A BOOLEAN MATRIX. *
* LIST THE LIST OF BOOLEAN MATRICES. *
* MATRIX THE MATRIX WHICH IS INSERTED INTO THE LIST. *
* MESAGE A MESSAGE FOR THE USER. *
* MPOINT THE MAXIMUM VALUE OF BPOINT AND OPOINT. *
* NVERT THE NUMBER OF VERTICIES IN EACH BOOLEAN MATRIX IN THE *
* LIST. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *
* ROW A ROW OF A BOOLEAN MATRIX. *
* SUB THE SUBSCRIPT FOR THE LIST ARRAY. *

Ak kkkkkkkkkk Ak khkrkhkhkkhhkkhd ok khhhhkrkkkhhhrkkrhkdkhkkhdkhrhkhdhhhhdrkkrhkkdk
KAk KKK Rkkkhkhk bk kkhhkdhkkhkhkkk ko bk khhdhkhhhhhrkhhkhhkkhdhhhdhhhhhkhkhhhhkddhk

* BEGIN VARIABLE SPECIFICATION. *
khkkkkkhhhkhdhkhhhhhhkbhhhrhkhrhkrkhhhhhhkhrhhrhhkhhhhhhhrrhhhkhhhhkhkhkdhhrdik

INTEGER BPOINT

INTEGER COLUMN

INTEGER MPOINT

INTEGER NVERT

LOGICAL*1 LIST (MPOINT, NVERT, NVERT)

LOGICAL*1 MATRIX (NVERT, NVERT)

CHARACTER* ( *) MESAGE

INTEGER OPOINT

INTEGER ROW

INTEGER SUB
khkkkkkhkkhkhkkhkhkhkkhkhhhkhkhhhkhhhhkhhhhkhkkkhkbhhhhkhdhhhkdhhkhkhhkkhhkhdhkrhkhdik
* END VARIABLE SPECIFICATION. *

Ak khhkhhhhrhkhkhhkkhkhhhk kAR KA ARk hhhkkhhhhhkhhkhhrdhkdhhkdhhdhhkdrkkhkhhhk
IF (MESAGE .NE. / ') GO TO 99999
hhkkhkkhkhkhhkkhhhkkhkkkkkhkhhhhkhkhhhkhhkdkkhkhrhhhkhrhhhhhhkhhrkdhdhdrhd

* BEGIN CHECKING POINTER RELATIONSHIPS. *

Fhkkkhkkkkkkhrkkkhhk Tk rkrkkhkhkkdrhrkhkkhhhrhhhkhrkkhhkkhkrkkdhkhhhhhhdhkkdrdk
IF (0 .GT. OPOINT) CALL HALT (’0 is greater than OPOINT.’)
IF (OPOINT .GT. BPOINT) CALL HALT

+ ('OPOINT is greater than BPOINT.’)
IF (BPOINT .GT. MPOINT) CALL HALT
+ ('BPOINT is greater than MPOINT.’)
Kkkkhkkkhkkkhkhkkhkkkrrkhhkhdhhhkhkhhhkhhkhhhhhhhhhrrhhhhhkhhhdhddhhddhrhrdrd
* END CHECKING POINTER RELATIONSHIPS. *

A-13




NSWCDD/MP-95/162

ke ok K ok gk ko ok ok ok ok de de ok ok gk ok ok ok ke ok ok ok ok ok e ok ok Sk ok ok ok ok ke ok ok ok ok e ok ok gk sk ok ok ok ok ok ok ok e ok ok v e ok ok ok ok ok ok ok ke ok

IF (BPOINT .LT. MPOINT) THEN
DO 300 SUB = BPOINT, OPOINT + 1, -1
DO 200 ROW = 1, NVERT
DO 100 COLUMN = 1, NVERT
LIST (SUB + 1, ROW, COLUMN) =

-+ LIST (SUB, ROW, COLUMN)
100 CONTINUE
200 CONTINUE
300 CONTINUE

BPOINT = BPOINT + 1
OPOINT = OPOINT + 1
DO 500 ROW = 1, NVERT
DO 400 COLUMN = 1, NVERT
LIST (OPOINT, ROW, COLUMN) = MATRIX (ROW, COLUMN)
400 CONTINUE
500 CONTINUE
ELSE
MESAGE = ’‘The list is full.’
END IF
99999 CONTINUE
RETURN

END
hhkkkkkkkhdhhhhhkhhhd kb hh kA hhhh Ak kA kA A Ak kkkk ok hkkkdkk kdkkkdk® %k kkkkdk

dhhkhkhkkhhhdhdhkhhhh kbbb kA hkkkkkkhhhhhkhhkkkkhhhkhhhhhhhhkkkhhhhhhhdkid
**********************************************************************
hhkkkhhhhhd ko hkhhhh Ak hkhk kAR Ak ko kkhkkkhhkh ks hkhhhhhhhhhhhhkhhhhrhhhrhhdhk
dhkhkkhkhhkhhhhhhhkhhhhhhhhhhhhhhhhhkhkhh kb hhhhkhkhkh ok kkkkkhkhkhkhkdkhkrs
***}******************************************************************

SUBROUTINE LISTWR (LIST, MATRIX, MPOINT, NVERT, OPOINT, PATH)
Ihkkkkkkhkhkhkhk ko kkkhhkkkhhk ke hk kA kR AR AR Ak h ko hkk Rk ke kkkk kR kA ks k ke

* THIS SUBROUTINE WRITES THE LIST OF BOOLEAN MATRICIES. *
Fhhkhkkkkkkkkkkk ke k ke ko kA AR A A I kAR AR Ak khh ok hkhkkkkkkhhk ke kk k& k% k%
hhhkhhkdkhkkhhhhhdhhdkhhok ko gk ok ko ok e do ok ok o o ok ok ok ok ok o ok o o o ok ok o o ok ok ok ok o o ok ok ok e e ok

* DICTIONARY *
* *
* ARROW THE CHARACTER STRING WHICH REPRESENTS AN ARROW. *
* COLUMN A COLUMN OF A BOOLEAN MATRIX. *
*  LIST A LIST OF BOOLEAN MATRICIES. *
* MATRIX THE BOOLEAN MATRIX WHICH IS CONVERTED INTO PATH *
* NOTATION. *
* MPOINT THE MAXIMUM VALUE OPOINT. *
* NVERT THE NUMBER OF VERTICIES IN EACH BOOLEAN MATRIX. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *
* PATH THE BOOLEAN MATRIX CONVERTED INTO PATH NOTATION. *
*  ROW A ROW OF A BOOLEAN MATRIX. *
* SUB THE SUBSCRIPT FOR THE LIST ARRAY. *

**********************************************************************
**********************************************************************

* BEGIN VARIABLE SPECIFICATION. *
bR R R R R R R L R R X R R g SR A AN A AP

CHARACTER*2 ARROW

INTEGER COLUMN

INTEGER MPOINT

INTEGER NVERT

LOGICAL*1 LIST (MPOINT, NVERT, NVERT)

LOGICAL*1 MATRIX (NVERT, NVERT)

INTEGER OPOINT

CHARACTER* (%) PATH

INTEGER ROW

A-14




NSWCDD/MP-95/162

INTEGER SUB
hkk Ik kAR RIIR IR IR AR AR IR IRk hhhhkkhhhkhkkkhhhkhkhhhhhhhhhhhkhhdhhhhddk
* END VARIABLE SPECIFICATION. *

hhhkkhkhkkkkkkhhkhhkhkhkhkhhkhhhhkhkhhhkdhkkhhhhkhhkkhhhkhhhdhhhhhhhhkhhhhrhkhkhhkkkhkthk

DO 500 SUB = OPOINT - 3, OPOINT
IF (SUB .LT. 1) THEN
WRITE (6, 100)
100 FORMAT (1X)
ELSE
DO 300 ROW = 1, NVERT
DO 200 COLUMN = 1, NVERT
MATRIX (ROW, COLUMN) =
+ LIST (SUB, ROW, COLUMN)
200 CONTINUE
300 CONTINUE
CALL PCONV (MATRIX, NVERT, PATH)
IF (SUB .EQ. OPOINT) THEN
ARROW = /=>’

ELSE
ARROW = * /
END IF
- WRITE (6, 400) ARROW, SUB, PATH
400 FORMAT (1X, A, I3, ’': ', A)
END IF
500 CONTINUE
RETURN
END

dhkhkkkkhkhkhkhkkhkhkkhhhkhhhkhkhkhkhhhkhhhkhhhhhhhirhbhhhhhhbhhhkhhhkdhhrhkhkhhhkkhkhhrkirhkk
kkkkkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkkhkhkhkhhhhkhhdhhhhkhhhhhdhdhhkhhhkhkkhhhkhhkrrkkkhkhhkk
khkkhkhkhkhkhkhkhkkhkhhkhkhhkhhkkhkhkhkhkkhkkhhhhhkhhkhhhhhhkkkhhhhdhhhhhkhkhkhhkhkhhkkrkkhhhhid
hkhkhkdhhhkhkikhhhkhkhhkhhhkhhhdkhrhhhkhhkdhhbhhhhbhhkhhhhhhhrhhhkihkhkhkhhhhkkhdrkihdkk
dkhkkkhkhkhkhkhkhkkhkhhkkhkhkhkhhkhkhkhhkhhhhhdhhhkhkhkhhdhhhhkhhkhrhhhkrhhhhhhhkhhkkkkkkhkn
kkkkhkhhkhkhkhkkhkhkhhhkhkhkhkkhkhhhhkhkhkhkhdhkhhkkhkkkhkhhkhhhhhhdhhhhhhhkhhdhhhkkkkhkhkhdhd

SUBROUTINE MINUS (MESAGE, OPOINT)
Akhkkkkkhhhhhhhkh bk hhkkhkkkkkhhhhhhhkhkhkhkkkkkhhhkhhhhhkhkkhhhhkkkhhhkdkr*

* THIS SUBROUTINE DECREMENTS THE OPERAND POINTER, IF POSSIBIE. *
Fhkkkkkkh Rk kkkkhkhkkkkk ko kkhkkhhkhh kR kk ok kkkhhkhkkkkkkkkkhdhkhrkkkhkhk*
kkkhkkhhkhkhkhhhkhkhkhhhkkhhkkhhhhkhhkhhhhhhhhhkhhkhhhhhhhhhhhhhkhrkdhrhhrhk

* DICTIONARY *
* *
* MESAGE A MESSAGE FOR THE USER. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *

hkhkkhkkhkhhkhkhkhhhkhkbhhkhhhkhhhhkhhhhdhhhhkhhhhkdhddhhhkhhhdbhhhhhhkhkhdhdhhhihkhk
khkhhkhkhhkhkhkhkhhhhkhhkhhhkhhhhidhhhhhhhhkhhhkhkhhkhhhhhhkidhhhhhkhhhhkhrhhhhkhkhk

* BEGIN VARIABLE SPECIFICATION. *
khkkkhkhkkkhkhkkhkkkRhkhhhhkhhhkhkhkdhhkhhkhhhkhkhkhohkkhdhkdhhhhhhohhhohodddhhkddhkhdhhkhhik
CHARACTER* (*) MESAGE
INTEGER OPOINT
R E T R F F R R R R R P P R R R R R R R R R R R R RS AR R R R R R R R P R R R R K]
* END VARIABLE SPECIFICATION. *

khkkkkhkhkkhkhkhkhkkkkhhkhkkhhhkdhhkhhhkhhhkhhkkhhhhhkhhkdhhhhhhkhhkxkkhkhhhkkhhkkkxhhd

IF (MESAGE .NE. ’ ’) GO TO 99999
IF (0 .LT. OPOINT) THEN
OPOINT = OPOINT -~ 1
ELSE IF (0O .EQ. OPOINT) THEN
MESAGE = ‘At the top of the list.’
ELSE
CALL HALT (’0 is greater than OPOINT.’)
END IF
99999 CONTINUE

A-15




NSWCDD/MP-95/162

RETURN

END
kkkhkkkhhhkhhhkkhkhhhhhhhhhdhhkhkhkhkkhkhhhhkhkhkhhhhhhdbdhkhhhhhhkhkrhkhhdbhhkhhhhhk

khkkkhkkkhkhdhdhhhkhhhhhhhhkhkhkhhkhkkkkhhhhkhdhhkhdhohhdhhhhhkhdhkhkhkhrhhkhbhkkhkhhkhkhk
kkkkkdkkhkhhkhkhhhhkkhrkhhhhrdhhkhkkhxhhkhhhhhhhhhhdhkhhhhkhhkhkhhhkhhhhrhhhhkk
kkhkkkhkhkkhhhkhhhkhhhhkhkdhhhdkhkhhkrdhdhhhhhhhkhhhhhhkhkhhhhhkhdhkhkhkhdhhkhhhkkk
**********************************************************************
**********************************************************************

SUBROUTINE PLUS (BPOINT, MESAGE, OPOINT)
**********************************************************************

* THIS SUBROUTINE INCREMENTS THE OPERAND POINTER, IF POSSIBLE. *
Kkkkkhkkhhkhhhhkkhhhhrk Rk kkhh ARk kkkhhhkkkkkhhhhkhkhhhhkkhkhhkkhhkkhk ki
Akkkkhhkhhhhkkhhhhkkhkk kR kR Rk K AR Ak kkhkkkhkhhkhkhkkkhkhkhhhhkhkkhhhhh*

* DICTIONARY *
* *
* BPOINT THE POINTER TO THE BOTTOM OF THE. LIST. *
* MESAGE A MESSAGE FOR THE USER. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *

khkkkhkhkkkkhhhkhkkkkkhkkhkhhkhkhhhhhkhhhhhkhkkhkkhkhkkkhkkkkkhhkkhhhhkhkkkkkkkhhhhkhkhkhkkxk
hhkhkhkkhhhbhkhkhkbhkdkhhhhkhhrdhhhdhhhhdhhhhddhhhhhhhhhhhkrhkhhhhkdxhhhhkhkhrihkk

* BEGIN VARIABLE SPECIFICATION. *
R T Y L T L L L)

INTEGER BPOINT

CHARACTER®* ( *) MESAGE

INTEGER OPOINT
T T TR R R R P R E S
* END VARIABLE SPECIFICATION. *

hhkkhhkkhhkhkkhhhhhkkhhhhkhkhkhhhhbhhhhhkrdhhrhhhhohhhhhhhhkkhhhhrdhkrhhhrdhhkddhhoikik
IF (MESAGE .NE. ' ‘) GO TO 99999
IF (OPOINT .LT. BPOINT) THEN
OPOINT = OPOINT + 1
ELSE IF (OPOINT .EQ. BPOINT) THEN
MESAGE = ‘At the bottom of the list.
ELSE
CALL HALT (‘OPOINT is greater than BPOINT.’)
END IF
99999 CONTINUE
RETURN
END
Ehkkkkkhkkkhkkkkkk kR Rk khkkkkkkkkhkhhhhhhkhhhhhhhh Ak kA Rk hkhkhhkddedkd®k
R T R R R R R P R T X R L R YU S R U R R g g g g
R R T T T R T T T R T L R R R g g JUpU gy
hkhkkhkkhkkhhhhdkhkhkdhhkhkhhkhkhhhhkhhkhkdhkhkhhhkhhdhhhhdhhkrhhkhhdhrhdkhdhhhhkhhkhkhhtk
KhkhkhhhhhkhkkkkhkhkhkhkhkkhhhkhhkhhdhhkrdrhkhkkrrkhhkhkkbhhkdhhkhhhhkhhhhkhAkakkkhkhkkhkhkdk
Fhhkkhhhhkkhkhhkhhhhhhhkhhdxhhkhhhrhkhhkrhhdhhkhhhrhhhhdrdhkhhrhkhrhkhkdthihk
SUBROUTINE UCONV (STRING)
Kkkkhhkhhhkhhkhhkhhkhhkkhkhkhkkkkkkhhhkkhk kb khk kb hhkkkkkkhkkhhdhkh ook ®
* THIS SUBROUTINE CONVERTS THE FIRST CHARACTER IN A STRING, IF IT *

*# IS IN LOWER CASE, TO UPPER CASE. *
hkkkkhhhhhhkkhkhhhkhhhhhhhhhkhhhkhh ko bk kb khkkhkkhk ke kkkhkkkkkhhhhkhkk

khkkkhkhhhhkdhhkhhhhhhhhhkdhhkhkhkhhhhkhhkhkhhhdhkhhhhhkhhkdkhhkhhkkhkhkhrhkdk

* DICTIONARY *
* *
* STRING THE CHARACTER STRING WHICH IS CONVERTED. *

LR R Y Y Y R R R L R
AhkkkkkhAkkhhrhhkdhdhhhhhkkdhhkhhkhhhhkhxkhkhkhkhkkhhkxhkkkhhkrkrkkkkhkhhhhhkkk

* BEGIN VARIABLE SPECIFICATION. *
khkkhkkhhkkhkhkhkhhhhkhkhkhkkhhhkxhhkkhkhhkkhhkkhhhkhkdrkhhhhkhkhkhhkhkhhkhkkhkhhkhkhkhhhhkhkhk
CHARACTER®* (*) STRING

Ahkhkkhhhhkkkhkkhkhkkhhhhhkkhhhhkxkhkkkhhkkhhhhhk ko hkkk Rk hkkddk ko h ek kkk ko

A-16




NSWCDD/MP-95/162

* END VARIABLE SPECIFICATION. *
I T L P T T r 2

IF (STRING (1:1) .EQ. ‘a’) STRING (1:1) = ‘A’
IF (STRING (1:1) .EQ. ‘b’) STRING (1:1) = ‘B’
IF (STRING (1:1) .EQ. ‘c’) STRING (1:1) = ‘cC’
IF (STRING (1:1) .EQ. ’d’) STRING (1:1) = ’D’
IF (STRING (1:1) .EQ. ‘e’) STRING (1:1) = ’‘E’
IF (STRING (1:1) .EQ. ‘f’) STRING (1:1) = ’'F’
IF (STRING (1:1) .EQ. ‘g’) STRING (1:1) = ‘G’
IF (STRING (1:1) .EQ. ‘h’) STRING (1:1) = ’‘H’
IF (STRING (1:1) .EQ. ‘i’) STRING (1l:1) = ’I’
IF (STRING (1:1) .EQ. ’j’) STRING (1l:1) = ’'J’
IF (STRING (1:1) .EQ. ‘k’) STRING (1:1) = ‘K’
IF (STRING (1:1) .EQ. ‘1’) STRING (1:1) = 'L’
IF (STRING (1:1) .EQ. ‘m’) STRING (1l:1) = ‘M’
IF (STRING (1:1) .EQ. ‘n’) STRING (1:1) = ‘N’
IF (STRING (1:1) .EQ. ‘o’) STRING (1l:1) = ‘0O’
IF (STRING (1:1) .EQ. ’‘p’) STRING (1l:1) = P’
IF (STRING (1:1) .EQ. ’‘qg’) STRING (1l:1) = ’Q’
IF (STRING (1:1) .EQ. ‘r’) STRING (1l:1) = ‘R’
IF (STRING (1:1) .EQ. ’‘s’) STRING (1:1) = 'S’
IF (STRING (1:1) .EQ. ‘t’) STRING (1:1) = ’T’
IF (STRING (1:1) .EQ. ‘u’) STRING (1l:1) = ‘U’
IF (STRING (1:1) .EQ. ’‘v’) STRING (1l:1) = 'V’
IF (STRING (1:1) .EQ. ‘w’) STRING (1:1) = ‘W’
IF (STRING (1:1) .EQ. ’x’) STRING (1:1) = ’X’
IF (STRING (1:1) .EQ. ‘y’) STRING (1l:1) = 'Y’
IF (STRING (1:1) .EQ. ’z’) STRING (1l:1) = ’Z’
RETURN

END

hkhkkkhkdhhkkhhhkhhkhhkkhkhhkhhkhhhhhhhhkdhhhhhkhhhhhhkhhhhkhkhhhhhhhkhkhkhhhkkkhrk
**********************************************************************
kkkkhkhkkkkhhkkhkhhhhhhkhkhhhkhhhhhhhhhhkhhhdrhhhhhkhkthkhkhhdhhhkhhhhkhkkidhkhkhkhkkkkx
kkkkhkkkkhkdkhhkhhhhhhhhkdhdhkhhhhhdhhhhkhhkhhdhhhhhhhkhkhhhhhhhhkhkhhhkhkhkkhhkkkkx
hkkkkkkhkhhhhkhkhkhhhkhkhkhhhkhkhhhhhrhkhkhhhhhkkhhhrhkhhhkhhhddhdhhkdhhhkkhhhohkd
khkkkhkhkkkkhkXxkhkhhhhhdhhhhhhkhkhhhhhhkhhhhdhhhhdhkhkkhkhhhhhhhhhhhhhhhkhhhkkdhx

PROGRAM BRC
hhkkhhkhkhhkhhhhhkhkhhhhhhkkkhhhkhhhhhkhhkhkkhhhhhhhhhkhkkhhhhhkkhkkkkhhkkhkk

* THIS PROGRAM WAS WRITTEN AT 20:28 ON 29 June 1995 BY CHRIS *
* EDWARD DUPILKA, POST OFFICE BOX 1716, FREDERICKSBURG, VIRGINIA, *
* 22402. THIS PROGRAM IS A BINARY RELATION CALCULATOR. *

khkkhkkhkdhhkhkhkhhkkhkkhkhkhhhkhhkhhhkhhkhhhhhkhhrhhhkhkhkhhhhkhhhxhhkhhkhrhhkhhkkrrrkki
khkhkhhkhxhhhkhkhhhdhkhhdhhhhdhhhkdhhhhhhkhhdhhhhkhhdhhdhhkhhhhhhkdkhkdhrhh ki

* DICTIONARY *
* %*
* BPOINT THE POINTER TO THE BOTTOM OF THE LIST. *
* COLUMN A COLUMN OF A BOOLEAN MATRIX. *
* GETCHASM THE FUNCTION WHICH GETS A CHARACTER FROM THE *
* KEYBOARD. *
*  GINT THE INTEGER WHICH REPRESENTS THE CHARACTER GOTTEN FROM *
* THE KEYBOARD. *
* GRID THE LOGICAL VARIABLE WHICH INDICATES IF THE GRID IS *
* TURNED ON OR OFF. *
*  LIST THE LIST OF BOOLEAN MATRICES. *
* MATRIX A BOOLEAN MATRIX. *
* MESAGE A MESSAGE FOR THE USER. *
* MPOINT THE MAXIMUM VALUE OF BPOINT AND OPOINT. *
* NVERT THE NUMBER OF VERTICIES IN EACH BOOLEAN MATRIX. *
* OPOINT THE POINTER TO THE OPERAND OF THE LIST. *
* PATH A BINARY RELATION RENDERED IN PATH NOTATION, IF *

A-17




NSWCDD/MP-95/162

* POSSIBLE. *
* POS A POSITION IN A STRING. *
* ROW A ROW OF A BOOLEAN MATRIX. *
* RSTR A ROW OF A BOOLEAN MATRIX IN STRING FORM. *
* SELECT THE SELECTION THAT THE USER MADE FROM THE MENU. *
* SUB A SUBSCRIPT FOR AN ARRAY. *
* TEXT THE TEXT WHICH COMPRISES THE VIDEO DISPLAY. *
* VSTRNG THE VERTICIES IN STRING FORM. *

kkhkhhkkhkhkhkhkkkkhkhhkkhhkhkrhkhrdkhhkhhkhhhhhhhhhkhkhhkhhhhhhhkkhhkhhhhkhkhhhhkkkhdk
kkkhkkhkkhkkhkkkkhkkhhkhhkhhhhhkhkhhhhhhhhdhhkhkhhhhhddhhhkhhkhkhdkhhkhkkhkhkhkhrkkkhkhk

* BEGIN PARAMETER SPECIFICATION AND INITIALIZATION. *
R R R R R R R R R R R R R R X R R R R E R E R R R E R R EF E R R R X R E R R R R R R X3

INTEGER MPOINT

PARAMETER (MPOINT = 99)

INTEGER NVERT

PARAMETER (NVERT = 18),
kkkkhkhhhkhkhkhkkhkrhkkhkrhhkhkhkhhkhhhkkdhddkhkdbhdhrdhbhhhhbhhhkhhrdhhkhdkhdhkhrhkdrhdhkkdhbhhkkdhhk
* END PARAMETER SPECIFICATION AND INITIALIZATION. *

hkkhkhkhkhhdhhkkkhhhkhhhhkhkhhbhdhhkhkhhhkhhkbhhkkhkrhhhhhhhdhkhhhhhkhkhkhhhkhhkhkhhikixkkk
Ahkkkhkhkkhkhkkkhhhhhkdhhhhikhhhhhhkhhhhhkkhhhhkdhhdhhhhkhhdhhhkhhkhhkhhhkhhd

* BEGIN VARIABLE SPECIFICATION. *
S E R SRS SRS SRS RS R R R SRS SRS LSRR R R R R R R R R R R R R Y P R E R L R ]

INTEGER BPOINT

INTEGER COLUMN

INTEGER*2 GETCHASM

INTEGER*2 GINT

LOGICAL*1 GRID

LOGICAL*1 - LIST (MPOINT, NVERT, NVERT)

LOGICAL*1 MATRIX (NVERT, NVERT)

CHARACTER*70 MESAGE

INTEGER OPOINT

CHARACTER* (3 * NVERT) PATH

INTEGER POS

INTEGER ROW

CHARACTER* (NVERT) RSTR

CHARACTER* 1 SELECT

INTEGER SUB

CHARACTER*79 TEXT (0:NVERT)

CHARACTER*35 VSTRNG
khkkhhkkhhkkhhkhhhkhkdhhhkhhhkhhhkkhhkhhhkhkhhhhrhhhhdhkhkhhrhbhhkhhrhkhrrkrrbhrhhhktd
* END VARIABLE SPECIFICATION. *

EE R R R R R RS E EERTE EEE EE EE  E E E  E E E EEE E E E E E E E T E REEE Y T R R R R SRRSO
Ahkhkkhkhhkkdhkkhhkd kA Ak kR Ak Ak Ak ko ko ko h ko h ko hkkkhkhkkkkhkkkkk ko kkkkhhkhk

* BEGIN VARIABLE INITIALIZATION. *
Khhkhhkhkhhhkhhkkhkhhhhkrhkhhkkrh Rk bk hhdhhdkxhkdhhhkdhrhhhkhhhhkdhhhk ok hhkhkkhtiid
BPOINT = O
GRID = .FALSE.
MESAGE = 7 !/
OPOINT = O
TEXT (00) = ’( Enter a path 1 2 3 4 5 6 7 *t y/
+ ‘'8 9 a b ¢ d e £ g h i’
TEXT (01) = ’{ Enter a matrix 1
TEXT (02) = ’C Copy 27
TEXT (03) = ’'D Delete 3
TEXT (04) = ’'I Invert 47
TEXT (05) = ‘M Multiply 57
TEXT (06) = ’- Scroll down 67
TEXT (07) = '+ Scroll up 77
TEXT (08) = ’G Grid 8’
TEXT (09) = ’E Exit 97

A-18




200

300
400

500

600
700

800

900

TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT
TEXT

NSWCDD/MP-95/162

(10) - a’
(11) = * b’
(12) =’ c’
(13) = d’
(14) = ' e’
(15) =/ £’
(16) = ' g’
(17) = h’
(18) = * ir

VSTRNG = ’123456789%abcdefghijklmnopgrstuvwxyz’
kkhkhkkkkhkkhkhhhkkhkhhkhhkhkhkhkhkhhhhdhkhihkhkhhhkhhkhhkhhhkhhkhkrkhhhhhkkhkhhhdhrhxk

* END VARIABLE INITIALIZATION.
khkhkhkhkhkhkkhhhdhhhhhkhhkkhhhhkhkhhhhhhhhhhkhhdhhhhhkkrkhhkhkhhhhhhhhhhkhkkhhkkkx

100 CONTINUE

DO 200 SUB = 1, NVERT
IF (GRID) THEN
TEXT (SUB) (26:79) = ’aédaéadédacéaséa’ //

......................................

ELSE
TEXT (SUB) (26:79) = / !
END IF
CONTINUE

IF (OPOINT .GT. O) THEN

DO 400 ROW = 1, NVERT

DO 300 COLUMN = 1, NVERT
IF (LIST (OPOINT, ROW, COLUMN)) THEN
POS = 3 * COLUMN + 23
TEXT (ROW) (POS:POS + 2) = CHAR (219)
// CHAR (219) // CHAR (219)
END IF
CONTINUE

CONTINUE
END IF
WRITE (6, 500)
FORMAT (1X)
DO 700 SUB = 0, NVERT

WRITE (6, 600) TEXT (SUB)

FORMAT (1X, A)
CONTINUE
CALL LISTWR (LIST, MATRIX, MPOINT, NVERT, OPOINT, PATH)
IF (MESAGE .EQ. ’ ') THEN

WRITE (6, 800) MESAGE

FORMAT (1X, A, /, 1X, \)
ELSE

WRITE (6, 900) MESAGE, ’\a’C

FORMAT (1X, A, A, /, 1X, \)
END IF
MESAGE = ©

*

khkhkhkhkhhkhkhkhkhhhkhkhhkhkkhkkhhhhhhkhkhkhhkkhhhkhhhkkhhkhhkhhhkhhkhkdhhkhhkhkhhkkkhkhkhkhhkk*®

*

BEGIN GETTING A CHARACTER FROM THE KEYBOARD.

*

Thhkhkkhhkhhhkhkhhhkhhkhhhhhhhkhkhkhkkhhkkhhhkkhkhkkhhkhhkkhhkhhhkhhkhhkkhhdhhkhkkhkkhkhkkk*k

1000

CONTINUE
GINT = GETCHASM ()
IF (GINT .EQ. 0) GO TO 1000
IF (GINT .LT. 256) THEN
SELECT = CHAR (GINT)
ELSE
SELECT
END IF

CHAR (0)

kkhkhkhkhkhhhkhkhkhhkhhkhhkhkhkhkhkhkkhhhkhhhhhkhhkhkhhhhhkhhhkhkhhhhkhkhkkhohkhkhkkkkihk

A-19




NSWCDD/MP-95/162

* END GETTING A CHARACTER FROM THE KEYBOARD. *
Kkkdkhkkhhhhhhhhhhhhhhhkkh Ak hhhkhhhhhhhk ko hkh kb hkkkxhkhkkkkkkkkkdkdkkdeddk

CALL UCONV (SELECT)
hkkhkkhkkhkkhhhkhkhkhkhkxhhkbhhkhkhhkkhhkhhkkhkdhhkhhhhkhhdhhkhhkhhkhhkhhkhhkhkhhhhrhhkhkhhhhkdkhkhhkd
IF (SELECT .EQ. /(') THEN
IF (BPOINT .LT. MPOINT) THEN
WRITE (6, 1100)
1100 FORMAT (’(’, \)
PATH (1:1) = ‘('
READ (5, 1200) PATH (2:)
1200 FORMAT (A)
CALL BMCONV (MATRIX, MESAGE, NVERT, PATH)
IF (MESAGE .EQ. / /) THEN
CALL INSERT (BPOINT, LIST, MATRIX, MESAGE,
+ MPOINT, NVERT, OPOINT)
END IF
ELSE IF (BPOINT .EQ. MPOINT) THEN
MESAGE = ’‘The list is full.’
ELSE
CALL HALT (’/BPOINT is greater than MPOINT. ‘)
END IF
khkkhhhkhhhhkhkhhhkhhhhhkhhhkhhhrhrthhhhhhrhhhhhrhrkkhkkhhkthhhrhhxhkdhkhhhdrkrdx
ELSE IF (SELECT .EQ. ‘[’) THEN
IF (BPOINT .LT. MPOINT) THEN
DO 1400 ROW = 1, 25
WRITE (6, 1300)

1300 FORMAT (1X)
1400 CONTINUE
WRITE (6, 1500)

1500 FORMAT (1X, ‘Enter a matrix. Note that a /,
+ ‘space or a 0 will be interpreted as ’,
+ ‘a 0 and ’/, /, 1X, ‘'every other /,
+ ‘character will be interpreted as a 1.7,
+ /. 1X, /, 1X, ’ 123456789abcdefghi’, /,
+ 1X)

DO 1900 ROW = 1, NVERT
WRITE (6, 1600) VSTRNG (ROW:ROW)

1600 FORMAT (1X, A, * *, \)
READ (5, 1700) RSTR
1700 FORMAT (A)

DO 1800 COLUMN = 1, NVERT
IF ((RSTR (COLUMN:COLUMN) .EQ. ’ /)

+ .OR. (RSTR (COLUMN:COLUMN) .EQ. ’07))
+ THEN
MATRIX (ROW, COLUMN) = .FALSE.
ELSE
MATRIX (ROW, COLUMN) = .TRUE.
END IF
1800 CONTINUE
1900 CONTINUE
CALL INSERT (BPOINT, LIST, MATRIX, MESAGE,
+ MPOINT, NVERT, OPOINT)

ELSE IF (BPOINT .EQ. MPOINT) THEN
MESAGE = ’‘The list is full.’
ELSE
CALL HALT (/BPOINT is greater than MPOINT.’)
END IF
KRRk ko kR kR Rk kA A A AR A AR AR AR IR AR KRRk A Ak Rk hkkkh ko khhkkkk ke khkhkkkk kg
ELSE IF (SELECT .EQ. ’+7) THEN
CALL PLUS (BPOINT, MESAGE, OPOINT)

A-20




NSWCDD/MP-95/162

T T L T T T T T T T PR R R R R g R U g e g g e
ELSE IF (SELECT .EQ. ’-’) THEN
CALL MINUS (MESAGE, OPOINT)
Kkhkkhhdhhhhhhhhhhhhrhhhkhhhhhhhhhhhhhhhhhhhhxhhhhhhk kb hhk ko hkkhkhkhkkk*
ELSE IF (SELECT .EQ. ‘C’) THEN
IF (OPOINT .GT. 0) THEN
IF (OPOINT .LE. MPOINT) THEN
DO 2100 ROW = 1, NVERT
DO 2000 COLUMN = 1, NVERT
MATRIX (ROW, COLUMN) =

+ LIST (OPOINT, ROW, COLUMN)
2000 CONTINUE
2100 CONTINUE
CALL INSERT (BPOINT, LIST, MATRIX, MESAGE,
+ MPOINT, NVERT, OPOINT)
ELSE .
CALL HALT (’OPOINT is greater than MPOINT.’)
END IF

ELSE IF (OPOINT .EQ. 0) THEN
MESAGE = ‘At the top of the list. There is ’/ //
+ 'no relation to copy here.’
ELSE
CALL HALT (’OPOINT is less than 0.7)
END IF
R T T R R R g g R G R R R R R OB A ARy
ELSE IF (SELECT .EQ. ‘D’) THEN
CALL DELETE (BPOINT, LIST, MESAGE, MPOINT, NVERT,
+ OPOINT)
T L R I I I I I,
ELSE IF (SELECT .EQ. ‘I’) THEN
IF (OPOINT .GT. MPOINT) CALL HALT
+ (OPOINT is greater than MPOINT.’)
IF (OPOINT .GT. 0) THEN
DO 2300 ROW = 1, NVERT
DO 2200 COLUMN = 1, NVERT
MATRIX (COLUMN, ROW) =
+ LIST (OPOINT, ROW, COLUMN)
2200 CONTINUE
2300 CONTINUE
DO 2500 ROW = 1, NVERT
DO 2400 COLUMN = 1, NVERT
LIST (OPOINT, ROW, COLUMN) =
+ MATRIX (ROW, COLUMN)
2400 CONTINUE
2500 CONTINUE
ELSE IF (OPOINT .EQ. 0) THEN
MESAGE = ’At the top of the list. There is ’ //
+ 'no relation to invert here.’
ELSE
CALL HALT (’OPOINT is less than 0.’)
END IF
Ry T T T L I I I mmT™

ELSE IF (SELECT .EQ. ‘M’) THEN
LR R T T Y T R TR TR R R R R R R R R R g R ey

* BEGIN CHECKING POINTER RELATIONSHIPS. *
Fhkkhkhhhkhhhhkhkhhhhhdhhhhhhhhhrkhkhhkkhhhkhhhhhhhhhhhhhhhhhhhhhrhhhkhrx

IF (0 .GT. OPOINT) CALL HALT

+ (0 is greater than OPOINT.’)
IF (OPOINT .GT. MPOINT) CALL HALT
+ (/OPOINT is greater than MPOINT.’)

A-21



NSWCDD/MP-95/162

kkkkkkkhkhkhhkhhhkhhkhkhhdhhkhkhhhhhhhhhhkhhhhhdhkhkhhhhhhhhhdhhhkhhhdhhkkhhhrhkrhkht

* END CHECKING POINTER RELATIONSHIPS. *
khkhkhkhkhhkhkhkhxkAxhkhkhkhhhkkhohkhkhkhhkhhdhhhhkhkhkrhhhkthhkhohkhdhhhkhhdhkxhhhhkhhkhhhhhkhthkk
IF (OPOINT .GT. 1) THEN
DO 2800 ROW = 1, NVERT
DO 2700 COLUMN = 1, NVERT
MATRIX (ROW, COLUMN) = .FALSE.
DO 2600 SUB = 1, NVERT
MATRIX (ROW, COLUMN) =

+ MATRIX (ROW, COLUMN) .OR.
+ (LIST (OPOINT - 1, ROW, SUB;
+ .AND.
+ LIST (OPOINT, SUB, COLUMN))
2600 CONTINUE
2700 CONTINUE
2800 CONTINUE
CALL DELETE (BPOINT, LIST, MESAGE, MPOINT, NVERT,
+ OPOINT)
DO 3000 ROW = 1, NVERT
DO 2900 COLUMN = 1, NVERT
LIST (OPOINT, ROW, COLUMN) =
+ MATRIX (ROW, COLUMN)
2900 CONTINUE
3000 CONTINUE
ELSE
MESAGE = ’Error. You need two charts to ’ //
+ ‘multiply.”
END IF

**********************************************************************
ELSE IF (SELECT .EQ. ‘G’) THEN
GRID = .NOT. GRID
**********************************************************************
ELSE IF (SELECT .NE. ‘E’) THEN
MESAGE = ’Your selection is not on the menu.’
END IF
**********************************************************************
IF (SELECT .NE. ‘E’) GO TO 100
STOP
END
**********************************************************************
**********************************************************************
**********************************************************************




NSWCDD/MP-95/162

APPENDIX B

References to Research on B,

B-1/B-2



NSWCDD/MP-95/162

Research on B,

1. For references to research done prior to 1980, see the following book.

(1) Kim, K. H., Boolean Matriz Theory and Applications, Marcell Dekker, Inc., New
York, 1982.

2. References to research done since 1980.

(1) Breen, M., A Mazimal Chain of Principal Ideals in the Semigroup of Binary Relations
on a Finite Set, Semigroup Forum 43 (1991), 63-76.

(2) Breen, M., Principal Ideals in the Semigroup of Binary Relations on a Finite Set:
What Happens When One Element Is Added to the Set, Semigroup Forum 44 (1992),
129-132.

(3) Chaudhuri, R. and A. Mukherjea, Idempotent Boolean Matrices, Semigroup Forum
21 (1980), 273-282.

(4) de Caen, D. and D. A. Gregory, Prime Boolean Matrices, Lectures Notes in Math.
829 (1980), Springer-Verlag, 169-173.

(5) de Caen, D. and D. A. Gregory, Primes in the Semigroup of Boolean Matrices, Linear
Algebra Appl. 37 (1981), 119-134.

(6) Hardy, D. and F. Pastijn, The Mazimal Regular Ideal of the Semigroup of Binary
Relations, Czechoslovak Math. J. 31 (1981), 194-198.

(7) Hardy, D. W. and M. C. Thornton, The Intersection of the Mazimal Regular Subsemi-
groups of the Semigroup of Binary Relations, Semigroup Forum 29 (1984), 343-349.

(8) Konieczny, J., On Cardinalities of Row Spaces of Boolean Matrices, Semigroup Forum
44 (1992), 393-402.

(9) Konieczny, J., Green’s Equivalences in Finite Semigroups of Binary Relations, Semi-
group Forum 48 (1994), 235-252.

(10) Konieczny, J., Reduced Idempotents in the Semigroup of Boolean Matrices, to appear.

(11) Le Rest, E. and M. Le Rest, Une Représentation Fidéle des Groupes d’un Monoide
de Relations Binaires sur un Ensemble Fini, Semigroup Forum 21 (1980), 167-172.

(12) Li, W. and M. C. Zhang, On Konieczny’s Conjecture of Boolean Matrices, Semigroup
Forum 50 (1995), 37-58.

(13) Markowsky, G., The Number of D-classes in the Semigroup of Binary Relations on
5-elements, Report No. 91-6, Department of Computer Science, University of Maine,
Orono, ME, 1991.

B-3



NSWCDD/MP-95/162

APPENDIX C

Historical Comments on
Semigroups and Path Notation

C-1/C-2



NSWCDD/MP-95/162

Historical Comments on
Semigroups and Path Notation

As one might suspect, the literature on semigroups is rather diverse with certain of
its areas extensively developed. Hille’s book concerns the analytic theory of semigroups
and its applications to analysis, while Birkhoff’s text gives an account of lattice-ordered
semigroups. On the other hand, the books by Suschkewitsch, Ljapin, and Clifford and
Preston concern algebraic semigroups — those semigroups not endowed with any further
structure.

Historically, it is claimed that the term “semigroup” first appeared in the mathematical
literature in 1904 (page 8 of J.-A. de Séguier’s book [1]), that the first published paper on
semigroups appeared in 1905 (L. E. Dickson [1]), and that the first book on semigroups
appeared in 1937 (A. K. Suschkewitsch [2]). (Clifford and Preston [1] and also Schein [1].)

From 1940 to 1961, according to Clifford and Preston, “... the number of papers [on
semigroups| appearing each year has grown fairly steadily to a little more than 30 on
average.” Their estimate roughly equates to the 494 bibliographical entries in the 1958
(first) edition of Ljapin’s book [1].

In 1952, Wagner introduced inverse semigroups as generalized groups, and two years
later, in 1954, Preston independently discovered these semigroups, calling them inverse
semi-groups. Subsequently, research activity in inverse semigroups has been substantial:
In 1984, M. Petrich published his 674 page text Inverse Semigroups. It contains 546
bibliographical entries, 505 of which are dated after 1958, the year that Ljapin listed 494.

At the very beginnings of inverse semigroup theory, Wagner [1] in 1952, Preston [2] in
1954, and Preston [3] in 1957, proved the Wagner-Preston Theorem — each inverse semi-
group is isomorphic to a subsemigroup of a symmetric inverse semigroup — the analogue
of Cayley’s Theorem from group theory.

Also in 1957, as part of his study of characters of symmetric inverse semigroups, W. D.
Munn [1] was the first to discover a notational representation of charts that is essentially
equivalent to path decomposition.

Munn’s decomposition used “links” and “cycles,” instead of proper paths and circuits.
For example, given the chart (18](29](345)(6)(7) € Cy, he would write [18][29](345)(6)(7),
the links being [18] and [29]. Links were defined as sequences. Thus, for example, [18]
would be a map having domain of size 2. In the context of path notation, however, (18]
is a proper 2-path, having domain of size 1. Similarly, the 3-circuit “(345)” has domain of
size 3, while in the context of Munn’s notation, “(345)” is a cycle with domain of size 9.
In spite of these differences, Munn’s approach and the one used here yield essentially the
same notational form.

By the mid-1980s, the idea of a proper path was evidently an idea waiting to happen:
In 1986, independent of Munn, the author [1] invented path notation (as presented here)

C-3



NSWCDD/MP-95/162

and proved Theorem 5.2. (The approach grew out of a study of hypomorphic mapping
sets in the famous Graph Reconstruction Conjecture (Chapter 13).) In the next year
(1987), G. M. S. Gomes and J. H. Howie [2], independent of either Munn or Lipscomb,
introduced the notion of a primitive nilpotent, which they denoted “||12---k|.” (Unlike
“links,” primitive nilpotents are precisely proper paths.) In their Theorem 2.8, they show
that a non-zero nilpotent in C,, is a disjoint union of primitive nilpotents, which is part
of our Theorem 5.2." And also in 1987 (independent of Gomes and Howie, Lipscomb, and
Munn), R. P. Sullivan [1] defined k-chains “[1,... ,k+1]” and k-cycles “(1,... ,k)”, which
are, respectively, proper (k + 1)-paths and k-circuits.

This mid-1980s idea of decomposing charts into paths merits comparison with the 1815
idea of decomposing permutations into cycles. In the permutation case, cycle decomposi-
tion appeared in 1815 along with the beginnings of finite group theory. In particular, in
1815 Cauchy [1, page 18] introduced cycle notation “(7,7)” for transpositions, factored a
three cycle (7,7,k) = (j,k) o (%,7), and then (Cauchy [2]) decomposed permutations into
disjoint cycles. Cycle notation proved useful in the early (up to 1911) development of finite
group theory: Burnside [1] opens his 1911 text Theory of Groups of Finite Order with the
following comment on cycle notation,

“AMONG the various notations used in the following pages, there is one of such
frequent recurrence that a certain readiness in its use is very desirable in dealing with
the subject of this treatise. We therefore propose to devote a preliminary chapter to
explaining it in some detail.”

Since 1911, however, the approach to group theory has become more and more abstract,
requiring less and less cycle notation. Nevertheless, cycle notation remains usefil, if not
fundamental, to the S,, theory.

In contrast, conceived in the 1950s, inverse semigroup theory was axiomatic from its
inception. It has the C, theory as one of its branches and path notation did not appear
until the mid-1980s. As to the state of the C, theory in 1985, consider the following
statement of Gomes and Howie [1] (where the reference number “[1]” refers to the reference
under Petrich on page C-6 below):

“Since the theory of inverse semigroups is now extensive enough to have been the
subject of a substantial book by Petrich [1], it is perhaps rather surprising that very
little has been written on the symmetric inverse semigroup.”

C-4




NSWCDD/MP-95/162

References for Appendix C

Birkhoff, G.
(1] Lattice Theory, Amer. Math. Soc. Colloq. Publ., 1940, revised 1948.
Burnside, W.
[1] Theory of Groups of Finite Order, 2nd edition, Cambridge University Press, Cam-
bridge, England 1911; Dover Publications, New York, 1955.
Bondy, J. A. and R. L. Hemminger
[1] Graph Reconstruction — A Survey, Journal of Graph Theory, 1 (1977), 227-268.
Cauchy, A. L.

[1] Mémoire sur le nombre des valeurs qu’une fonction peut acquérir, lorsqu’on y
permute de toutes les maniéres possibles les quantités qu’elle renferme, Journal de
I’Ecole Polytechnique, 10 (1815), 1-28.

[2] Mémoire sur les fonctions qui me peuvent obtenir que deuz valeurs égales et de
signes contraires par suite des transpositions opétées entre les variables qu’elles
renferment, Journal de ’Ecole Polytechnique, 10 (1815), 29-112.

Clifford, A. H. and G. B. Preston

[1] The Algebraic Theory of Semigroups, Math. Surveys No. 7, Amer. Math. Soc.,
Providence, Vol. I (1961).

[2] The Algebraic Theory of Semigroups, Math. Surveys No. 7, Amer. Math. Soc.,
Providence, Vol. II (1967).

de Séguier, J.-A.
[1] Eléments de la Théorie des Groupes Abstraits, Paris, 1904.
Dickson, L. E.

[1] On semi-groups and the general isomorphism between infinite groups, Trans. Amer.

Math. Soc., 6 (1905), 205-208.
Gomes, G. M. S. and J. M. Howie

[1] On the ranks of certain finite semigroups of transformations, Math. Proc. Cam-
bridge Philos. Soc., 101 (1987), 395-403.

[2] Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc.,
30 (1987), 383-395.

Green, J. A.
[1] On the structure of semigroups, Annals of Math., 54 (1951), 163-172.
Hille, E.
[1] Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31,
Amer. Math. Soc., Providence, R.I., 1948.
Hille, E. and R. S. Phillips
[1] Functional Analysis and Semigroups, 1957, revision of Hille [1].
Howie, J. M.
[1] An Introduction to Semigroup Theory, Academic Press, London, (1976).

C-5



NSWCDD/MP-95/162

[2] The subsemigroup generated by the idempotents of a full transformation semigroup,
J. London Math. Soc., 41 (1966), 707-716.
[3] Products of idempotents in finite full transformation semigroups, Proc. Roy. Soc.
Edinburgh A, 86 (1980), 243-245.
[4) Products of idempotents in finite full transformation semigroups: some upper bounds,
Proc. Roy. Soc. Edinburgh A, 98 (1984), 25-35.
Konieczny, J. and S. Lipscomb
[1] Centralizers in the semigroup of partial transformations, to appear.
Lipscomb, S. L.
[1] Cyclic subsemigroups of symmetric inverse semigroups, Semigroup Forum, 34
(1986), 243-248.
[2] The structure of the centralizer of a permutation, Semigroup Forum, 37 (1988),
301-312.
[3] The alternating semigroup: congruences and generators, Semigroup Forum, 44
(1992), 96-106.
[4] Centralizers in symmetric inverse semigroups: Structure and Order, Semigroup
Forum, 44 (1992), 347-355.
[5] Problems and applications of finite inverse semigroups, in Proceedings of the In-
ternational Colloquium on Words, Languages, and Combinatorics, Editor M. Ito,
World Scientific Publishing Co. Pte. lte., Hong Kong, New Jersey, (1992), 337-
352.
(6] Presentations of alternating semigroups, Semigroup Forum, 45 (1992), 249-260.
Lipscomb, S. L. and J. Konieczny
[1] Classification of S, —normal semigroups, Semigroup Forum, 51 (1995).
Ljapin, E. S.
[1] Semigroups, Amer. Math. Soc., Trans. of Math. Monographs, Providence, Rhode
Island, 1963.
Munn, W. D.
[1] The characters of the symmetric inverse semigroup, Proc. Cambridge. Philos. Soc.,
53 (1957), 13-18.
Petrich, M.
[1] Inverse Semigroups, John Wiley & Sons, 1984.
[2] Congruences on inverse semigroups, J. of Algebra, 55 (1978), 231-256.
Preston, G. B.
[1] Inverse semi-groups, J. London Math. Soc., 29 (1954), 396-403.
[2] Representations of inverse semi-groups, J. London Math. Soc., 29 (1954), 404-411.

[3] A note on representations of inverse semigroups, Proc. Amer. Math. Soc., 8 (1957),
1144-1147.

Schein, B. M.

[1] Techniques of semigroup theory (Book Review), Semigroup Forum, 44 (1994),
397-402.

C-6




NSWCDD/MP-95/162

Sullivan, R. P.
[1] Semigroups generated by nilpotent transformations, J. of Algebra, 110 (1987),
324-343.
[2] A Study in the Theory of Transformation Semigroups, Ph. D. Thesis, Monash
University, 1969.
[3] Automorphisms of injective transformation semigroups, Studia Sc. Math. Hung.,
15 (1980), 1-4.
Suschkewitsch, A.
[1] Uber die endlichen gruppen lhne das gesetz der eindeutigen umkehrbarkeit, Math.
Ann., 99 (1928), 30-50.
[2] The Theory of Generalized Groups, Kharkow, 1937 (Russian).
[3] Untersuchungen uber verallgemeinerte substitutionen, Atti del Congresso Inter-
nazionale dei Matematici Bologna, (1928), 147-157.
von Neumann, J.
[1] On regular rings, Proc. Nat. Acad. Sci. U. S. A., 22 (1936), 707-713.
Wagner, V. V.
(1] Generalized groups, Doklady Akad. Nauk SSSR, 84 (1952), 1119-1122 (Russian).



DISTRIBUTION

Copies

DOD ACTIVITIES (CONUS) INTERNAL

ATIN AW 2 E231

COMMANDING GENERAL G04

MARCORSYSCOM G305

QUANTICO VA 22134-5010 A02
A02

ATTN STUDIES AND ANALYSIS 2

COMMANDING GENERAL

MARCORSYSCOM

QUANTICO VA 22134-5010

DEFENSE TECH INFORMATION CTR

8725 JOHN J KINGMAN ROAD

SUITE 0944

FT BELVOIR VA 22060-6218 2

NON-DOD ACTIVITIES (CONUS)

ATTN STEVE LIPSCOMB 20
DEPARTMENT OF MATHEMATICS

MARY WASHINGTON COLLEGE
FREDERICKSBURG VA 22408

ATTN GIFT AND EXCHANGE DIV 4
LIBRARY OF CONGRESS
WASHINGTON DC 20540

CENTER FOR NAVAL ANALYSES

4401 FORD AVENUE
ALEXANDRIA VA 22302-1498 2

(D

MOORE
STIEGLER
FRANCIS
OBRASKY

Copies

— b N = W



